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Abstract

Motivated by modern applications such as computerized adaptive testing, sequen-

tial rank aggregation, and heterogeneous data source selection, we study the problem

of active sequential estimation, which involves adaptively selecting experiments for se-

quentially collected data. The goal is to design experiment selection rules for more

accurate model estimation. Greedy information-based experiment selection methods,

optimizing the information gain for one-step ahead, have been employed in practice

thanks to their computational convenience, flexibility to context or task changes, and

broad applicability. However, statistical analysis is restricted to one-dimensional cases

due to the problem’s combinatorial nature and the seemingly limited capacity of greedy

algorithms, leaving the multidimensional problem open.

In this study, we close the gap for multidimensional problems. In particular, we

propose adopting a class of greedy experiment selection methods and provide statisti-

cal analysis for the maximum likelihood estimator following these selection rules. This

class encompasses both existing methods and introduces new methods with improved

numerical efficiency. We prove that these methods produce consistent and asymptoti-

cally normal estimators. Additionally, within a decision theory framework, we establish

that the proposed methods achieve asymptotic optimality when the risk measure aligns

with the selection rule. We also conduct extensive numerical studies on both simulated

and real data to illustrate the efficacy of the proposed methods.

From a technical perspective, we devise new analytical tools to address theoretical

challenges. For instance, we demonstrate that functions of inverted Fisher information

have a regularization effect when used in selection rules, thereby automatically explor-

ing necessary experiments. Additionally, we show that a class of greedy and stochastic

optimization methods converges to the minimum of a convex function over a simplex
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almost surely. These analytical tools are of independent theoretical interest and may be

reused in related problems involving stochastic approximation and sequential designs.

Keywords: Active sequential estimation, optimality theory, sequential analysis, computer-

ized adaptive testing

1 Introduction

In many modern applications, data are collected sequentially and adaptively through varied

experiments, with the distribution being influenced by both unknown model parameters and

the experiments. Active sequential estimation, which involves the adaptive selection of the

experiments, enables more efficient model estimation. It has received considerable attention

across various disciplines recently. A few examples are provided below.

Computerized Adaptive Testing (CAT) CAT refers to a form of educational assess-

ment where test items are administered adaptively and sequentially based on the test taker’s

responses to previous items. For instance, if a test taker answers questions correctly, they

may receive a more challenging item subsequently. Over the past decades, CAT has gained

popularity due to its ability to achieve a more accurate assessment with fewer test items

compared to traditional non-adaptive tests. To implement CAT, Item Response Theory

(IRT) models are typically employed (Chen et al., 2024; Reckase, 2006). IRT models assume

that a test-taker’s responses, whether correct or incorrect, are influenced by both their latent

trait parameter and the selected item. A crucial aspect of CAT design involves developing

effective item selection rules to estimate the latent trait parameter as accurately as possible.

For a comprehensive review on this topic, see Bartroff et al. (2008); Chang and Ying (2009);

Wang et al. (2017), and the references therein.

Sequential rank aggregation The rank aggregation problem involves inferring a global

rank for a set of items by aggregating noisy pairwise comparison results. This problem

finds applications across various domains such as social choice (Saaty and Vargas (2012)),

sports (Elo (1978)), and search rankings (Page et al. (1999)). Statistical models such as the

Bradley-Terry model (Bradley and Terry, 1952), which assigns a latent score parameter to

each object, are often utilized to model the noisy pairwise comparison results. Subsequently,

the global rank can be inferred from the estimated latent score parameters. Recently, the

sequential rank aggregation problem has attracted increased interest. This approach involves

sequentially and adaptively selecting the next pair to compare based on the comparison

results of previously selected pairs (see, e.g.,Chen et al. (2013, 2022, 2016)). A key question
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of interest is the design of pair selection rules to enhance the efficiency of the rank aggregation

process.

Besides the aforementioned applications, additional areas of application include active

sampling in signal processing (Mukherjee et al., 2022), active contextual search (Chen et al.,

2023), and dynamic pricing (Chen and Wang, 2023), among others.

In all of the above applications, the problem can be formulated as a sequential design-

and-estimation problem where data X1, · · · , Xn, · · · are collected sequentially. Each Xn has

a density function fθ,an(·) relative to a baseline measure, with θ ∈ Rp representing the

underlying model parameter, an ∈ A denoting the experiment selected at time n, and A
being a finite set encompassing all possible experiment choices. For example, in the context

of CAT, θ corresponds to the latent proficiency level of a test-taker on p subjects or skills,

an indicates the n-th test item, A indicates the item bank which collects all the potential

test items, and Xn ∈ {0, 1} indicates that whether the test-taker answers the n-th question

correctly or not. At each time step n, a decision maker needs to select an experiment an

based on the past observations X1, a1, X2, a2, · · · , Xn−1, an−1, sample Xn accordingly, and

construct an estimator θ̂n for estimating θ. The goal is to find a good adaptive experiment

selection rule and an estimator θ̂N so that θ̂N is as accurate as possible, where N could be

a fixed sample size or a random stopping time depending on the application.

Greedy information-based experiment selection rules that maximize one-step-ahead in-

formation gain have been commonly adopted for item selection in CAT (see, e.g., Chang and

Ying (1996); Cheng (2009); Van Der Linden (1999); Wang and Chang (2011)). For example,

Wang and Chang (2011) and Tu et al. (2018) describe the following experiment selection

rule:

an+1 = argmin
a∈A

tr
[{

I(θ̂ML
n ;an, a)

}−1
]
, (1)

where an = (a1, · · · , an) denotes the experiments selected up to time n,

θ̂ML
n = argmax

θ

n∑
i=1

log fθ,ai(Xi)

denotes the maximum likelihood estimator (MLE) with n observations,

I(θ̂ML
n ;an, a) =

1

n+ 1

{ n∑
i=1

Iai(θ̂
ML
n ) + Ia(θ̂

ML
n )
}

represents the rescaled Fisher information matrix associated with the first n experiments

and one extra experiment a, while Ia(θ) = EX∼fθ,a [∇ log fθ,a(X){∇ log fθ,a(X)}T ] denotes
the Fisher information matrix associated with the experiment a at the parameter θ. Other
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experiment selection rules in a similar form (e.g., substituting the trace function with other

functions like log det(·)) are also explored in Wang et al. (2011).

These information-based experiment selection rules offer several benefits. First, the se-

lection processes only require the calculation of the Fisher information and are easy to

implement. Moreover, they are inherently parallelizable, offering scalability when |A| is
large. Second, they quantify the information gain associated with each experiment, thereby

providing priority scores for them. This feature enables extension of these rules to various

contexts and tasks (e.g., A varies over time). Additionally, given a parametric model, these

rules can readily address problems in other applications.

Despite the computational advantages and wide applicability, the statistical analysis of

greedy information-based experiment selection methods is limited to the one-dimensional

case (p = 1) in existing research. In this context, Chang and Ying (2009) established the

consistency, asymptotic normality and optimality results for the MLE, and discussed the

application in CAT. However, the multidimensional (p > 1) case remains an open problem,

partly due to the challenges regarding the combinatorial nature of the multidimensional

problem and the seemingly limited capacity of greedy methods. The following example,

which mimics the settings of an educational test measuring two latent traits, illustrates that

one has to combine experiments carefully in order to obtain a consistent and/or risk-optimal

estimator.

Example 1. Let θ = (θ1, θ2)
T and A = {1, 2, 3}. Let fθ,a be the probability mass func-

tion for Bernoulli variables with the probability parameter (1 + exp(−θ1 + 0.1))−1, (1 +

exp(−θ2))−1, and (1+exp(−θ1/2−θ2))−1, for a = 1, 2, 3, respectively. Let nk be the number

of times that experiment k is selected and πk = nk/n be its frequency (k = 1, 2, 3) with

n =
∑

k nk. Then, a necessary condition for the existence of a consistent estimator θ̂n is

max{min(n1, n2),min(n1, n3),min(n2, n3)} → ∞. Moreover, in order to minimize the mean

squared error E∥θ̂n − θ∥2 asymptotically, a necessary condition is (π1, π2, π3) → π∗(θ) as

the total sample size grows, where π∗(θ) is a vector-valued optimal proportion function de-

pending on θ. See Figure 1 for an illustration of the function π∗(θ) and additional details

in Section 5.2.

In this example, achieving consistent or asymptotically optimal estimators requires exper-

iments to be combined carefully with a parameter-dependent frequency. However, information-

based selection methods, being one-step-ahead greedy, do not consider the benefits of com-

bining experiments or multi-step planning. Thus, it remains an open question whether these

selection methods lead to consistent, asymptotically normal, or risk-optimal estimators.

In this study, we provide a definitive answer to the above question for a class of greedy-

information-based experiment selection rules. In particular, we introduce two experiment
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selection rules based on a pre-specified criterion function Gθ : Rp×p → R,

GI0 : an+1 = argmin
a∈A

Gθ̂ML
n

[{
I(θ̂ML

n ;an, a)
}−1
]
, and (2)

GI1 : an+1 = argmax
a∈A

tr
[
∇Gθ̂ML

n

(
Σ̂n

)
Σ̂nIa(θ̂

ML
n )Σ̂n

]
, (3)

where Σ̂n = {I(θ̂ML
n ;an)}−1, ∇Gθ(Σ) =

(
∂Gθ(Σ)
∂Σij

)
1≤i,j≤p

denotes the gradient of Gθ

with respect to its matrix input and recall I(θ̂ML
n ;an) =

1
n

∑n
i=1 Iai(θ̂

ML
n ). We refer to the

selection rule in (2) as the zero-order greedy information-based selection rule (GI0), and

that in (3) as the first-order greedy information-based selection rule (GI1), because GI0 is

minimizing a certain function of the Fisher information at the next time point, while GI1 is

derived based on a first-order Taylor expansion of GI0; see Section 3 for more details. GI0

generalizes the selection rule in (1), accommodating more diverse settings. New methods can

be obtained by specifying an appropriate function Gθ. GI1 offers a class of new experiment

selection rules which share similar asymptotic properties as GI0 but are computationally

more efficient when both p and |A| are large.

Our main theoretical contributions are as follows. First, we show that MLE is strongly

consistent and asymptotically normal when using GI0 or GI1 as the experiment selection

rule, under mild conditions. Second, we derive the asymptotic covariance matrix of the MLE

as a function involving Gθ(·) and the Fisher information. Third, we prove that the empirical

frequency of selected experiments converges to a limiting frequency. Fourth, we show that

the experiment selection rule GI0 (or GI1) combined with the MLE is asymptotically optimal

in minimizing certain risk measures related to Gθ(·). In particular, if Gθ(·) = tr(·), then the

MLE has the smallest asymptotic mean squared error (MSE), when compared with other

experiment selection rules and estimators. Moreover, these results are valid not only for

fixed sample sizes, but also for random stopping times, which is beneficial for applications

that use early stopping criteria.

Beyond the methodological and theoretical contributions, we have developed new ana-

lytical tools for addressing technical challenges. For example, we show that the inverted

Fisher information, through its directional derivatives in experiment selection rules, acts as

a regularizer. This facilitates automatic exploration of necessary experiments, removing the

need for additional exploration steps traditionally employed in stochastic control methods

for related problems (e.g., two-stage design in sequential design for hypothesis tests (Cher-

noff, 1959; Naghshvar and Javidi, 2013)). Furthermore, we show that a class of greedy

and stochastic optimization methods converges to the minimum of a convex function over a

simplex almost surely. In addition, we refine and extend several classic results in stochastic

5



analysis, such as Anscombe’s theorem (Anscombe, 1952) and the Robbins-Siegmund theorem

(Robbins and Siegmund, 1971). These theoretical results and technical tools are important

in their own right and may be reused in other related problems. See Section 6 for more

details of the technical challenges and our new analytical tools.

The rest of the paper is organized as follows. Section 2 formalizes the active sequential

estimation problem. Section 3 introduces the greedy information-based experiment selection

rules GI0 and GI1, elaborating on their implementation. Section 4 offers the main theo-

retical results regarding the MLE and the experiment selection rules. Section 5 details the

methods and theory in applications including the item selection in CAT and sequential rank

aggregation. Section 6 gives new analytical tools and a proof sketch. Section 7 presents two

simulation studies, which illustrate the finite sample performance and the computational

efficiency of the proposed methods. Section 8 showcases the performance of the proposed

method on a real-data example. Section 9 summarizes the main results and provides discus-

sions on future directions. All the technical proofs for the theoretical results and additional

simulation results are given in the supplementary material.

1.1 Notations

In this paper, we use the following notations and mathematical conventions. Let C and C

represent generic constants that are bounded from above and below, respectively. These

generic constants are independent of θ and a ∈ A, and their values may vary from place to

place. Let |A| denote the cardinality of a set A. Let I(·) denote the indicator function. Let

Ip denote the p × p identity matrix. The inner product between real matrices (or vectors)

A and B of the same size is defined by ⟨A,B⟩ = tr(ATB). For a real matrix A, define

the operator norm ∥A∥op as the maximum singular value of A. For a vector x, denote

its Euclidean norm by ∥x∥ =
√
⟨x,x⟩. For a symmetric matrix A, λmax(A), λmin(A),

and κ(A) denote its maximum eigenvalue, minimum eigenvalue, and condition number,

respectively. If A is a positive definite matrix, then κ(A) = λmax(A)
λmin(A)

. For a differentiable

matrix function G(Σ), its gradient is denoted by ∇G(Σ), and is defined as the matrix such

that G(Σ + ∆Σ) − G(Σ) = ⟨∇G(Σ),∆Σ⟩ + o(∥∆Σ∥). For symmetric matrices A and

B, define the partial order A ⪯ B if and only if B − A is a positive semidefinite matrix.

Throughout the paper, all the vectors are column vectors, unless otherwise specified.
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2 Problem Statement

Let X1, · · · , Xn, · · · be data collected sequentially, A be a finite set with cardinality k,

and a1, · · · , an, · · · ∈ A be the experiments selected at different time points. Denote by

Fn = σ(a1, X1, · · · , an, Xn), the sigma field that contains information of the observations

and the selected experiments up to time n. At each time n, a decision maker needs to select

the experiment an+1 adaptively based on past information. That is, an+1 is measurable with

respect to Fn. Throughout the study, we assume that the distribution of Xn+1 satisfies

Xn+1|Fn ∼ fθ,an+1(·) for θ ∈ Θ ⊂ Rp

where θ is a p-dimensional model parameter, Θ is a compact parameter space and fθ,an+1(·)
denotes the probability density of Xn+1 with respect to a baseline measure. That is, Xn+1

is assumed to follow a parametric model, and its distribution is determined by both the

underlying model parameter θ and the selected experiment an+1.

In an active sequential estimation problem, the goal is to design an experiment selection

rule for {an}n≥1 and find an estimator θ̂n that is measurable with respect to Fn, so that θ̂n

is close to the true underlying parameter θ∗ with high probability. In some applications, the

data collection process may be stopped early to save for the sampling cost. In these cases,

we are also interested in θ̂N , where N is a random stopping time.

3 Methods

For the estimation method, we focus on the MLE, although some of the methods and the-

oretical results may be extended to other estimators. The definition of MLE is given as

follows. Let the selected experiments up to time n be an = (a1, · · · , an). Then, the rescaled
log-likelihood and the corresponding MLE are

ln(θ) = ln(θ;an) =
1

n

n∑
i=1

log fθ,ai(Xi), and (4)

θ̂ML
n ∈ argmax

θ∈Θ
ln(θ;an). (5)

We propose adopting two experimental selection rules, including the zero-order greedy information-

based selection rule GI0 and the first-order greedy information-based selection rule GI1. The

precise description of these methods are given in Algorithms 1 and 2.

We explain steps in Algorithms 1 and 2. First, we note that both algorithms require a

pre-specified criterion function Gθ : Rp×p → R. Motivated by Kiefer (1974) on the design of
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Algorithm 1 GI0 Algorithm

1: Input: θ̂0, a
0
1, · · · , a0n0

.

2: Require: θ̂0 ∈ Θ, a01, · · · , a0n0
∈ A such that

∑n0

i=1 Ia0i
(θ̂0) is nonsingular.

3: Initialization: a1 = a01, · · · , an0 = a0n0
, collecting responsesX1, X2, · · · , Xn0 correspond-

ingly.
4: for n = n0 to N do
5: calculating the MLE θ̂ML

n according to equation (5)
6: selecting experiment an+1 according to equation (2)
7: collecting response Xn+1 corresponding to the selected experiment an+1

8: end for
9: Output: θ̂ML

N

Algorithm 2 GI1 Algorithm

1: Input: θ̂0, a
0
1, · · · , a0n0

.

2: Require: θ̂0 ∈ Θ, a01, · · · , a0n0
∈ A such that

∑n0

i=1 Ia0i
(θ̂0) is nonsingular.

3: Initialization: a1 = a01, · · · , an0 = a0n0
, collecting responsesX1, X2, · · · , Xn0 correspond-

ingly.
4: for n = n0 to N do
5: calculating the MLE θ̂ML

n according to equation (5)
6: selecting experiment an+1 according to equation (3)
7: collecting response Xn+1 corresponding to the selected experiment an+1

8: end for
9: Output:θ̂ML

N

experiments, a reasonable choice is

Gθ(Σ) = Φq(Σ) =


log det(Σ), if q = 0;

tr(Σq), if 0 < q < 1;

(tr(Σq))1/q, if q ≥ 1,

(6)

for a prespecified q ≥ 0. In the context of adaptive item selection in CAT, GI0 with

Gθ(Σ) = Φq(Σ) has been adopted in Van Der Linden (1999) and Wang and Chang (2011). In

particular, the selection rule in (1) corresponds to GI0 with Gθ(·) = Φ1(·). Both GI0 and GI1

are relatively new in other applications described in Section 1. Note that for Gθ(Σ) = Φq(Σ),

it is a function independent with the input θ. Another option is Gθ(Σ) = tr(HθΣ), where

Hθ is a positive definite matrix depending on θ. This criterion function is useful in the cases

where we would like to assign different weights to different values of θ. For more details,

please refer to Theorem 4.8.

Second, both algorithms require an initialization step where n0 experiments are selected

so that the Fisher information matrix I(θ̂0;an0) is nonsingular. This initialization step
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ensures that I(θ̂n;an) is nonsingular and the experiment selection rules in (2) and (3) are

well-defined for all n ≥ n0. In practice, it is usually straightforward to find such a01, · · · , a0n0
.

For instance, in Example 1, we could choose θ̂0 = (0, 0), (a01, a
0
2) = (1, 2), and n0 = 2. Then,

at each time point, the algorithm first calculates the MLE based on the available information,

selects a new experiment according to (2) for GI0 (or (3) for GI1), and then samples a new

observation according to the selected experiment.

We refer to the selection rule in Algorithm 1 as GI0 and that in Algorithm 2 as GI1,

because GI0 tries to minimize the criterion function Gθ̂n

[{
I(θ̂ML

n ;an, a)}−1
]
for one-step

ahead, while GI1 tries to minimize its first-order approximation, i.e.,

Gθ̂ML
n

[{
I(θ̂ML

n ;an, a)}−1
]
−Gθ̂ML

n

[{
I(θ̂ML

n ;an)}−1
]

≈
〈
πa

n+1 − πn,
∂

∂π
Gθ̂ML

n

[{∑
a∈A

π(a)Ia(θ̂
ML
n )
}−1]∣∣∣

π=πn

〉
=− 1

n+ 1
tr
[
∇Gθ̂ML

n

(
{I(θ̂ML

n ;an)}−1
)
{I(θ̂ML

n ;an)}−1Ia(θ̂
ML
n ){I(θ̂ML

n ;an)}−1
]

+
1

n+ 1
tr
[
∇Gθ̂ML

n

(
{I(θ̂ML

n ;an)}−1
)
{I(θ̂ML

n ;an)}−1
]
,

(7)

where the empirical frequency vector πn is defined as

πn = πn[an] =
( 1
n
|{i; ai = a, 1 ≤ i ≤ n}|

)
a∈A

, (8)

with an = (a1, · · · , an) collects experiments selected up to time n, and πa
n+1(a

′) = n
n+1

πn(a
′)+

1
n+1

I(a = a′) is the empirical frequency at the time n+1 if a′ is selected at that time. Note

that GI0 minimizes the first line of (7), GI1 minimizes the first term on the last equation

of (7), and the second term on the last equation of (7) does not depend on the choice of

experiment a. This suggests that GI0 and GI1 are asymptotically equivalent, although the

rigorous theoretical justification is much more involved.

3.1 Improving Computational Efficiency

If k, p are large, and Ia(θ) has some low-dimensional representation, GI1 can be implemented

with improved numerical efficiency. In particular, we consider two specific cases which are

commonly seen in applications, including (1) low-rank information: Ia(θ) = La(θ)L
T
a (θ)

where La(θ) ∈ Rp×s for all a and θ and s < p; (2) sparse and low-rank information: La(θ)

has no more than s non-zero rows. For these cases, Algorithm 2 can be implemented using

the following accelerated version.
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Algorithm 3 Accelerated GI1 Algorithm

We modify line 6 in Algorithms 2, while keeping the other lines of the algorithms

unchanged.

6: selecting experiment an+1 according to

M = {I(θ̂ML
n ;an)}−1∇Gθ̂ML

n

(
{I(θ̂ML

n ;an)}−1
)
{I(θ̂ML

n ;an)}−1,

an+1 = argmax
a∈A

tr
[
LT
a (θ̂

ML
n )MLa(θ̂

ML
n )
]
.

Lemma 3.1. Assume the computational complexity of evaluating Gθ(Σ) and ∇Gθ(Σ) is no

more than O(p3). Given the MLE θ̂ML
n and I(θ̂ML

n ;an), we have

1. the computational complexity for each iteration in GI0 is of the order O(kp3);

2. the computational complexity for each iteration in the accelerated GI1 Algorithm 3 is

O(ksp2+p3), assuming that the information matrices are low-rank matrices with given

La(θ) ∈ Rp×s. Moreover, the computational cost for the accelerated GI1 Algorithm 3

becomes O(ks2p+ p3) if La(θ) has no more than s non-zero rows.

According to the above lemma, the accelerated GI1 algorithm is computationally much

more efficient than GI0, when k and p are large and s is small. Numerical results supporting

these findings can be found in Section 7.2.

3.2 Early Stopping

In many applications, the data collection process is stopped early when sufficient observations

have been gathered to make accurate statistical inference. For instance, in the context of

CAT, educational tests often have variable lengths determined by specific early stopping

rules. These rules generally lead to less fatigue and a better experience for examinees. In

this section, we introduce two early stopping rules suitable for active sequential estimation.

The first stopping rule τ
(1)
c is concerned with the estimation of a differentiable function

of the parameter h(θ) ∈ R, and it is defined as

τ (1)c = min
{
m ≥ n0; ŜE(h(θ̂

ML
m )) ≤ c

}
, (9)

where ŜE
2
(h(θ̂ML

m )) = 1
m
{∇h(θ̂ML

m )}T{I(θ̂ML
m ;am)}−1∇h(θ̂ML

m ). The second stopping rule

τ
(2)
c is concerned with the estimation of the vector θ, and is defined as

τ (2)c = min
{
m ≥ n0; M̂SE(θ̂ML

m ) ≤ c
}
, where M̂SE(θ̂ML

m ) =
1

m
tr
(
{I(θ̂ML

m ;am)}−1
)
. (10)
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Here, ŜE serves as an approximation of sd(h(θ̂ML
m )) and M̂SE(θ̂ML

m ) serves as an approxima-

tion of MSE(θ̂ML
m ) = Eθ∗∥θ̂ML

m − θ∗∥2. Both rules terminate the data collection process once

a certain error estimator falls below a predetermined threshold c.

4 Theoretical Results

In this section, we first introduce the regularity conditions, and then present the main the-

oretical results regarding the consistency, asymptotic normality, and the optimality of the

proposed method.

4.1 Regularity Conditions

Throughout Section 4, we make the following Assumptions 1–5, along with Assumptions 6A

and 7A, and we will refer to this set of assumptions as the ‘regularity conditions’. All the

theoretical results still hold when 6A and 7A are replaced with the more relaxed Assumptions

6B and 7B.

Assumption 1. The parameter space Θ is a non-empty compact and convex subset of Rp.

The true parameter θ∗ is an interior point of Θ.

Assumption 2. The support of the probability density fθ,a, denoted as supp(fθ,a), depends

only on a and does not depend on θ, where the support of a function is defined as

supp(fθ,a) = cl{xa; fθ,a(xa) > 0},

and cl(S) denotes the closure of a set S. Moreover, for all a ∈ A and Xa ∈ supp(fθ,a),

the gradient ∇θ log fθ,a(X
a) = (

∂ log fθ,a(X
a)

∂θi
)1≤i≤p and the Hessian matrix ∇2

θ log fθ,a(X
a) =

(
∂2 log fθ,a(X

a)

∂θi∂θj
)1≤i,j≤p exist, where θ = (θ1, · · · , θp)T . Assume that there exist functions Ψa

1

and Ψa
2 satisfying supθ∈Θ EXa∼fθ,a{Ψa

1(X
a)}2 <∞, supθ∈Θ EXa∼fθ,aΨ

a
2(X

a) <∞,

∥∇θ log fθ1,a(X
a)−∇θ log fθ2,a(X

a)∥ ≤ Ψa
1(X

a) ∥θ1 − θ2∥ , and (11)

∥∥∇2
θ log fθ1,a(X

a)−∇2
θ log fθ2,a(X

a)
∥∥
op

≤ Ψa
2(X

a) ∥θ1 − θ2∥ , (12)

for all θ1,θ2 ∈ Θ and a ∈ A. Furthermore, for all a ∈ A,

sup
θ∈Θ

EX∼fθ∗,a{∥∇θ log fθ,a(X)∥2} <∞ and sup
θ∈Θ

EX∼fθ∗,a{
∥∥∇2

θ log fθ,a(X)
∥∥
op
} <∞.

11



Assumption 3. The Fisher information matrices satisfy the following conditions:

Ia(θ) = EX∼fθ,a

[
∇θ log fθ,a(X){∇θ log fθ,a(X)}T

]
= −EX∼fθ,a

{
∇2

θ log fθ,a(X)
}
,

and those Fisher information matrices are continuously differentiable with respect to θ for

all a ∈ A. Furthermore,
∑

a∈A Ia(θ) is positive definite for every θ ∈ Θ.

Assumption 4. Let M(θ;π) =
∑

a∈A π(a)EX∼fθ∗,a{log fθ,a(X)} for π = (π(a))a∈A. As-

sume the following uniform law of large numbers holds for all sequence an = (a1, · · · , an)
such that ai is measurable with respect to Fi−1, for all 1 ≤ i ≤ n:

P
{
lim
n→∞

sup
θ∈Θ

|ln(θ;an)−M(θ;πn[an])| = 0

}
= 1, (13)

where πn[an] = (πn(a;an))a∈A, and πn(a;an) = 1
n
|{i; ai = a, 1 ≤ i ≤ n}| denotes the

empirical frequency that the experiment a is selected up to time n.

Assumption 5. The criterion function Gθ takes one of the following forms:

1. Gθ(·) = Φq(·) for some q ≥ 0 where Φq(·) is defined in (6), or

2. the function Gθ(·) : Rp×p 7→ R is convex, and it satisfies: for all positive defi-

nite matrix Σ, ∇θ∇Gθ(Σ) and ∇2Gθ(Σ) are continuous in (θ,Σ); and for all pos-

itive definite matrices satisfying A ⪰ B, we have Gθ(A) ≥ Gθ(B). Additionally,

supA κ(∇Gθ(A)) <∞ and limλmax(A)→∞ infθ∈Θ Gθ(A) = ∞.

Assumption 6A (Reparametrization). There exist matrices {Za}a∈A and probability den-

sity functions {hZaθ,a(·)}a∈A satisfying the following requirements

1. Za is a matrix of dimension pa × p with rank pa and fθ,a(·) = hZaθ,a(·) for all a ∈ A.

2. Let ξa = Zaθ be a reparametrization of θ. Assume that the Fisher information matrix

of each experiment a is nonsingular with respect to ξa. That is, the compressed Fisher

information matrix

Iξa,a(ξa) = EX∼hξa,a

[
∇ξa log hξa,a(X){∇ξa log hξa,a(X)}T

]
= −EX∼hξa,a

{
∇2

ξa log hξa,a(X)
}

is nonsingular for all θ ∈ Θ.

Assumption 7A (Identifiability). There exists a constant C > 0 such that for all θ ∈ Θ,

DKL(hξ∗a,a∥hξa,a) ≥ C ∥ξ∗a − ξa∥2 , (14)
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where ξ∗a = Zaθ
∗ is the compressed parameter after reparametrization, and DKL(hξ∗a,a∥hξa,a)

denotes the Kullback–Leibler divergence between the density functions hξ∗a,a and hξa,a, and

is defined as DKL(hξ∗a,a∥hξa,a) = EX∼hξ∗a,a
log
(

hξ∗a,a(X)

hξa,a(X)

)
.

We comment on the above regularity conditions. Assumptions 1, 2, 3 and 4 are extensions

of standard regularity conditions for the consistency of the MLE based on independent and

identically distributed (i.i.d.) observations (see, e.g., Chapter 5 of Van der Vaart (2000)).

In particular, Assumption 1 ensures the existence of MLE. Assumption 2 requires that the

gradient of log-density function associated with each experiment is stochastic Lipschitz and

has a bounded second moment. Condition (12) can be replaced by a more relaxed condition:

∥∥∇2
θ log fθ1,a(X

a)−∇2
θ log fθ2,a(X

a)
∥∥
op

≤ Ψa
2(X

a)ψ(∥θ1 − θ2∥), (15)

where ψ : [0,∞) → [0,∞) is a strictly increasing continuous function such that ψ(0) = 0.

Assumption 3 requires that the Fisher information matrices are well-behaved. Under this

assumption, each Fisher information matrix Ia(θ) may be singular, but their sum is nonsin-

gular. In other words, if we combine all the experiments together, the Fisher information

matrix is nonsingular. Assumption 4 requires that the log-likelihood follows the uniform law

of large numbers. This assumption can be verified by uniform martingale laws of large num-

bers (see Rakhlin et al. (2015)) in most applications. Assumption 5 describes the requirement

on the criterion function Gθ(·). Assumptions 6A and 7A require that for each experiment

a, we can reparameterize the model with a new parameter ξa with possibly lower dimension

pa ≤ p such that ξa is locally identifiable around the true model parameter, and the Fisher

information matrix with respect to ξa is nonsingular. Note that Fisher information with

respect to θ may be singular in this case.

All the regularity assumptions are easily satisfied in practical problems, including the

item selection in CAT and the sequential rank aggregation problem described in Section 1.

See Section 5 for detailed justifications of the assumptions in these applications. Note that

6A and 7A can be relaxed to a more general condition, allowing for non-linear model repa-

rameterization. These relaxed conditions are provided below.

Assumption 6B. For Q ⊂ A, define a vector space VQ = VQ(θ) =
∑

a∈QR(Ia(θ)), where

R(A) represents the column space of a matrix A. Assume that the dimension dim(VQ(θ))

does not depend on θ, and there exist constants 0 < c ≤ c <∞, which do not depend on Q

and θ, such that for all Q ⊂ A and θ ∈ Θ

c · PVQ(θ) ⪯
∑
a∈Q

Ia(θ) ⪯ c · PVQ(θ), (16)
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where PVQ(θ) denotes the orthogonal projection matrix onto vector space VQ(θ).

Assumption 7B. Let SA = {π = (π(a))a∈A :
∑

a∈A π(a) = 1 and π(a) ≥ 0 for all a ∈ A}
denote the simplex in RA. Assume that there exists a positive constant C such that for all

π ∈ SA and θ ∈ Θ,∑
a∈A

π(a)DKL(fθ∗,a∥fθ,a) ≥ C
∑
a∈A

π(a)(θ − θ∗)TIa(θ
∗)(θ − θ∗), (17)

where DKL(fθ∗,a∥fθ,a) is the Kullback–Leibler divergence between the density functions fθ∗,a

and fθ,a.

4.2 Main Theoretical Results

In this section, we present the main theoretical results, including the consistency, asymptotic

normality and the optimality of the proposed method. Recall that the regularity conditions

(Assumptions 1 – 5, along with Assumptions 6A – 7A or 6B – 7B) are assumed throughout

the section.

4.2.1 Strong Consistency

We start with the strong consistency of the MLE following GI0 or GI1.

Theorem 4.1 (Strong consistency). Let θ̂ML
n be the MLE following the experiment selection

rule GI0 or GI1, as described in Algorithm 1 and Algorithm 2. Then,

lim
n→∞

θ̂ML
n = θ∗ a.s. P∗,

where P∗ denotes the data-generating probability distribution under the true model parameter

θ∗.

Theorem 4.1 suggests that the MLE will be close to the true model parameter with a

large sample size following GI0 or GI1.

4.2.2 Limiting Selection Frequency and Asymptotic Normality of MLE

Let

Iπ(θ) =
∑
a∈A

π(a)Ia(θ),

be the weighted Fisher information associated with a proportion vector π ∈ SA. The

distribution of MLE depends on the empirical frequency vector πn, which is defined by (8).
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We first present an auxiliary asymptotic normality result for the MLE following a general

active experiment selection rule that is not necessarily GI0 or GI1.

Theorem 4.2 (Asymptotic normality following general experiment selection rules). Let θ̂ML
n

be the MLE calculated according to (5) following an active experiment selection rule that is

not necessarily GI0 or GI1. Let πn be the corresponding empirical frequency vector.

Assume that there exists π ∈ SA such that πn converges to π in probability P∗ as n→ ∞,

and Iπ(θ∗) is nonsingular. Then,

√
n(θ̂ML

n − θ∗)
d→ Np

(
0p,
{
Iπ(θ∗)

}−1
)
as n→ ∞, (18)

where ‘
d→’ denotes the convergence in distribution.

The above Theorem 4.2 extends the classic asymptotic normality results for MLE to the

sequential setting with active experiment selection. It roughly states that if the frequency

of the selected experiment approximates a limiting proportion as the sample size grows, and

the Fisher information weighted by the limiting proportion is nonsingular, then the MLE is

asymptotically normal and the asymptotic covariance matrix is the inverted weighted Fisher

information. Next, we will show that if we follow the experiment selection rule GI0 or GI1,

then the frequency for the selected experiments is approaching a limiting proportion that

is determined by the criterion function Gθ. For this purpose, we first define a function

Fθ : SA → R,
Fθ(π) = Gθ

[{∑
a∈A

π(a)Ia(θ)
}−1]

. (19)

Theorem 4.3 (Limiting experiment selection frequency following GI0 or GI1). Assume that

Fθ∗(π) has a unique minimizer, denoted by π∗. That is, π∗ = argminπ∈SA Fθ∗(π). Then,

GI0 and GI1 both satisfy

lim
n→∞

πn = π∗ a.s. P∗, (20)

where πn is the corresponding empirical frequency vector. Moreover, for a general function

Fθ∗(·) whose minimizer is not necessarily unique, we have

lim
n→∞

nβ{Fθ∗(πn)− min
π∈SA

Fθ∗(π)} = 0 a.s. P∗. (21)

for all 0 ≤ β < 1/2, given that GI0 or GI1 is used as the experiment selection rule.

The asymptotic normality of the MLE following GI0 or GI1 is proved by combining the

above two theorems. We summarize this result in the next theorem.
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Theorem 4.4 (Asymptotic normality following GI0 or GI1). Let θ̂ML
n be the MLE following

the experiment selection rule GI0 or GI1, as described in Algorithm 1 and Algorithm 2.

Assume Fθ∗(π) has a unique minimizer π∗. Then,

√
n(θ̂ML

n − θ∗)
d→ Np

(
0p,
{
Iπ∗

(θ∗)
}−1
)
. (22)

The covariance of the MLE can be approximated by the plug-in estimator n−1{Iπn(θ̂ML
n )}−1.

This is justified by the next theorem.

Theorem 4.5 (Asymptotic covariance matrix of the MLE). Under the settings of Theo-

rem 4.4,
√
n
{
Iπn(θ̂ML

n )
}1/2

(θ̂ML
n − θ∗)

d→ Np(0p, Ip). (23)

In addition, for any continuously differentiable function g : Θ → R such that ∇g(θ∗) ̸= 0p,

√
n(g(θ̂ML

n )− g(θ∗))∥∥∥{Iπn(θ̂ML
n )
}−1/2∇g(θ̂ML

n )
∥∥∥ d→ N

(
0, 1
)
. (24)

The first part of the above theorem justifies the use of the plug-in estimator for the covari-

ance matrix of the MLE. The second part of the theorem suggests that the approximate 1−α
confidence interval for g(θ) can be constructed as g(θ̂ML

n )± zα/2

∥∥∥{Iπn(θ̂ML
n )
}−1/2∇g(θ̂ML

n )
∥∥∥

where zα/2 is the 1− α/2 quantile of the standard normal distribution.

4.2.3 Asymptotic Optimality

In this section, we present results regarding the optimality of the proposed methods. We

consider two notions of optimality, including the optimal design and asymptotic efficiency of

the estimators under a decision theory framework. The former extends a similar concept in

the literature on the design of experiments, and the latter builds upon the classic asymptotic

efficiency results for MLE with i.i.d. observations. We start with the notion of optimality in

terms of the optimal design.

Definition 4.6 (Gθ∗- optimality). A selection rule is said to be Gθ∗ a.s. optimal design if

its corresponding selection frequency {πn}n∈Z+ satisfies

lim
n→∞

Gθ∗({Iπn(θ∗)}−1) = min
π∈SA

Gθ∗({Iπ(θ∗)}−1) a.s. P∗. (25)

The above notion of Gθ∗- optimal selection rules extends the classic concept of optimal

designs adopted in the literature on the design of experiments (see, e.g., Kiefer (1974); Yang
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et al. (2013)). It allows for general criteria functions and adaptive experiment selection

rules. If an adaptive experiment selection rule is Gθ∗- optimal, it approximately minimizes

the criterion function when the sample size is large. Theorem 4.3 implies the following result.

Theorem 4.7 (Gθ∗- optimal selection). Both GI0 and GI1 are Gθ∗ a.s. optimal.

The above theorem indicates that the proposed experiment selection rules have the best

performance in some sense when compared with other experiment selection rules. Next, we

consider the optimality property of the MLE when combined with GI0 or GI1 under the lens

of a sequential decision theory framework for the design-and-estimation problem.

Consider a loss function L(θ∗, θ̂) for an estimator θ̂ following an active experiment se-

lection rule, and the corresponding risk Eθ∗L(θ∗, θ̂). The next theorem first establishes a

lower bound for the asymptotic risk for unbiased estimators and then shows that the MLE

combined with the selection rule GI0 (or GI1) achieves this lower bound when the criterion

function matches the loss function.

Theorem 4.8 (Minimum risk for unbiased estimators). Let L(θ, θ̂) be a loss function twice

continuously differentiable in θ̂ satisfying that L(θ, θ̂) ≥ 0, L(θ, θ̂) = 0 if and only if θ̂ = θ,

and ηIp ⪯ 1
2
∇2

θ̂
L(θ∗, θ̂) ⪯ η′Ip for some positive constants η and η′, and all θ̂ ∈ Θ. Let

Hθ = 1
2
∇2

θ̂
L(θ, θ̂)

∣∣∣
θ̂=θ

. Then, the following results hold.

1. Assume regularity conditions (but without Assumption 5) hold. Consider an unbiased

estimator Tn of θ following an arbitrary adaptive experiment selection rule. If the loss

function does not satisfy L(θ∗, θ̂) ≡ ⟨Hθ∗(θ∗ − θ̂),θ∗ − θ̂⟩, we further assume for any

ε > 0, lim supn→∞ Eθ∗n∥Tn − θ∗∥2I(∥Tn − θ∗∥ > ε) = 0. Then,

lim inf
n→∞

Eθ∗

[
n · L(θ∗,Tn)

]
≥ inf

π∈SA
tr(Hθ∗{Iπ(θ∗)}−1). (26)

In particular, if the squared error loss L(θ, θ̂) = ∥θ−θ̂∥2 is used, then for any unbiased

estimator Tn, lim infn→∞

[
n ·MSE(Tn)

]
≥ infπ∈SA tr({Iπ(θ∗)}−1).

2. Under Assumptions 1-4, 6A and 7A, and further assume that there exists α > 0, such

that for any ξa = Zaθ,θ ∈ Θ and xa ∈ supp(fθ,a),

λmin(−∇2
ξa log hξa,a(x

a)) ≥ α > 0. (27)

Assume there exists δ > 0 such that EXa∼fθ∗,a ∥∇θ log fθ,a(X
a)∥2+δ <∞. Assume that

tr(Hθ∗{Iπ(θ∗)}−1) has a unique minimizer, denoted by π∗. If we choose Gθ(Σ) =
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tr(HθΣ) and use the experiment selection rule GI0 (or GI1) described in Algorithm 1

(or Algorithm 2), then the MLE achieves the lower bound in (26). That is,

lim
n→∞

Eθ∗{n · L(θ∗, θ̂ML
n )} = min

π∈SA
tr(Hθ∗{Iπ(θ∗)}−1). (28)

In particular, if L(θ, θ̂) = ∥θ − θ̂∥2, the corresponding criterion function is Gθ(·) =
Φ1(·) = tr(·). MLE combined with GI0 (or GI1) achieves the asymptotic lower bound

for n ·MSE(Tn) for unbiased estimator Tn.

The first part of the above theorem provides a lower bound for the risk of any unbiased

estimator combined with an arbitrary experiment selection rule. In particular, when p =

|A| = 1, it aligns with the classic Cramér - Rao lower bound for the variance of unbiased

estimators with independent observations. The second part of the theorem suggests that

the asymptotic risk of the MLE combined with the proposed GI0 (or GI1) matches the

lower bound, if the criterion function aligns with the loss function. When p = |A| = 1, this

matching risk gives an extension of the classic asymptotic efficiency result for MLE with

i.i.d. data.

We note that Theorem 4.8 does not directly imply that the proposed method minimizes

risk within a class of decision rules, since the MLE is not necessarily unbiased. This scenario

is analogous to the classic asymptotic efficiency result for MLE with i.i.d. observations,

where the MLE is shown to have the asymptotic variance matching the Cramér - Rao bound

for unbiased estimators but the MLE itself is not unbiased. On the other hand, the asymp-

totic optimality of the MLE within a decision theory framework can be formalized using

concepts such as local asymptotically normal (LAN) estimators and asymptotic concentra-

tion (see Chapter 8 of Van der Vaart (2000)) in classic asymptotic statistics. The next

theorem suggests that MLE combined with the proposed experiment selection method is

also asymptotically optimal in a similar sense. Here, we omit the definitions of notations

and terminology such as “⇝”, “⋆”, and “bowl-shaped functions”, and refer readers to The-

orem 8.8 and 8.11 in Chapter 8 of Van der Vaart (2000), as the formal definitions of these

notations are lengthy.

Theorem 4.9 (Local asymptotic minimax risk). Assume a1, · · · , an, · · · are experiments

selected following an active experiment selection rule such that an+1 is measurable with respect

to Fn for all n. Assume that the sequence (Tn(a1, X1, · · · , an, Xn),πn) is regular at (θ,π) ∈
Θ× SA for estimating parameter θ, which means that for every h ∈ Rp,

√
n
(
Tn − (θ +

h√
n
)
) θ+ h√

n
⇝ Lπ

θ and πn

θ+ h√
n

⇝ π, (29)
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for some distribution Lπ
θ , and Iπ(θ) =

∑
a∈A π(a)Ia(θ) is nonsingular. Then, the following

statements hold.

1. (Convolution theorem) There exists a probability measure Mπ
θ such that

Lπ
θ = Np(0p, {Iπ(θ)}−1) ∗Mπ

θ . (30)

In particular, if Lπ
θ has the covariance matrix Σπ

θ , then Σπ
θ ⪰ {Iπ(θ)}−1.

2. (Local asymptotic minimax theorem) For any bowl-shaped loss function ℓ,

sup
|F |<∞,F⊂Rp

lim inf
n→∞

sup
h∈F

Eθ+ h√
n
ℓ
(√

n
(
Tn − (θ +

h√
n
)
))

≥ Eℓ(V π) ≥ min
π

Eℓ(V π), (31)

where the first supremum is taken over all finite subsets F of Rp, and V π ∼
Np(0p, {Iπ(θ)}−1).

In the case where ℓ(θ) = ∥θ∥2 and Gθ(·) = Φ1(·) = tr(·), the second part of Theorem 4.8

together with Theorem 4.9 imply that the MLE combined with both GI0 and GI1 selection

achieves the local asymptotic minimax lower bound on the MSE of estimators.

4.3 Theoretical Results Regarding Early Stopping Rules

As discussed in Section 3.2, early stopping rules are adopted in many applications to reduce

the expected sample size. In this section, we provide consistency and asymptotic normality

results for the MLE obtained at a large random stopping time.

Theorem 4.10 (Strong consistency at a random stopping time). Let θ̂ML
n be the MLE follow-

ing the experiment selection rule GI0 or GI1, as described in Algorithm 1 and Algorithm 2,

and let τn ∈ N be a sequence of stopping time with respect to the filtration {Fn}n∈Z+ such

that limn→∞ τn = ∞ a.s. and τn <∞ a.s. for each n. Then,

lim
n→∞

θ̂ML
τn = θ∗ a.s. P∗.

The above theorem extends Theorem 4.1 to allow for random stopping times. It suggests

that the MLE is close to the true model parameter at a large random sample size. Next,

we present the result on asymptotic normality, which enables statistical inference at large

stopping times.

Theorem 4.11 (Asymptotic normality following GI0 or GI1 with an early stopping rule).

Let θ̂ML
n be the MLE following the experiment selection rule GI0 or GI1, as described in
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Algorithm 1 and Algorithm 2. Assume Fθ∗(π) has a unique minimizer π∗. Let {cn}n≥0

be a positive and decreasing sequence such that cn → 0 as n → ∞. Let h : Θ → R
be a continuously differentiable function such that ∇h(θ) ̸= 0p for all θ ∈ Θ. Consider

stopping times τ
(1)
cn and τ

(2)
cn defined in (9) and (10), respectively. Then, for both stopping

time τn = τ
(1)
cn and τn = τ

(2)
cn , we have

√
τn
{
Iπτn (θ̂ML

τn )
}1/2

(θ̂ML
τn − θ∗)

d→ Np

(
0p, Ip

)
. (32)

Furthermore, for any continuously differentiable function g : Θ → R such that ∇g(θ∗) ̸= 0p,

√
τn(g(θ̂

ML
τn )− g(θ∗))∥∥∥{Iπτn (θ̂ML

τn )
}−1/2∇g(θ̂ML

τn )
∥∥∥ d→ N(0, 1). (33)

5 Applications

In this section, we provide details on the methods and theoretical results to applications

discussed in Section 1, including item selection in CAT and adaptive pairs selection in se-

quential rank aggregation problems. We also provide results regarding active estimation for

generalized linear models (GLM), which encompass many useful models as its special cases.

5.1 Active Estimation for GLM

Consider the case where the distribution of the observations falls into an exponential family

(see, e.g., McCullagh (2019)). Following the setting in Section 5 of Chaudhuri et al. (2015),

we consider the density functions

fθ,a(xa) = ζa(xa) exp
{
xaz

T
a θ −Ba(z

T
a θ)
}
, (34)

where xa ∈ R, za ∈ Rp, and Ba(·), a ∈ A. Assume that the support of Ba is R. Under

this model, θ serves as the unknown linear coefficient in a GLM and we are interested in

estimating it using the proposed Algorithm 1 and Algorithm 2. The Fisher information is

given by

Ia(θ) = B′′
a(z

T
a θ)zaz

T
a and I(θ;an) =

n∑
i=1

B′′
ai
(zT

ai
θ)zaiz

T
ai
. (35)

Based on the above equations, Algorithms 1 and 2 are simplified as follows.
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Algorithm 4 Simplified GI0/GI1 Algorithm for GLM

We modify the following lines in Algorithms 1 and 2, while keeping the other lines of

the algorithms unchanged.

2: Require: choose a01, · · · , a0n0
such that dim(span{za0n

;n = 1, 2, · · · , n0}) = p.

6: The Fisher information matrices used in line 6 of Algorithms 1 and 2 are calculated

using the formula (35).

Corollary 5.1. Assume the function Ba has the support R, dim(span{za; a ∈ A}) = p, and

Assumptions 1 and 5 hold. If the above Algorithm 4 for GI0 or GI1 is used, then all the

theorems presented in Section 4.2 hold.

Note that in the above corollary, the assumptions are greatly simplified compared to the

regularity conditions described in Section 4.1, thanks to the nice form of GLMs. It only

requires that the parameter space is compact, the true parameter is an interior point of the

parameter space, and the parameter is identifiable when using all the experiments together.

In practice, the parameter space Θ may not be given in advance. In these cases, we may

specify Θ as a box (i.e., Θ = [−r, r]p) or ball (i.e., Θ = {θ : ∥θ∥ ≤ r}) for some large r.

The theoretical results still apply, if the true parameter is an interior point of the parameter

space.

5.2 Computerized Adaptive Testing (CAT)

CAT has gained prominence in recent decades as an innovative approach to educational

assessment (Bartroff et al., 2008; Chang and Ying, 2009; Wainer et al., 2000). In CAT,

test items are sequentially and adaptively chosen from an item pool based on the test-

taker’s previous responses. This approach enhances test precision and shortens test length

by selecting items tailored to the test-taker’s individual latent traits. Item Response Theory

(IRT) and Multidimensional Item Response Theory (MIRT) models are commonly used to

model a test-taker’s responses (See, e.g., Chen et al. (2024), Embretson and Reise (2013), and

Reckase (2006) for reviews on IRT and MIRT models). In a binary MIRT model, a response

to an item is coded as 0 or 1, where 1 indicates that the item was answered correctly and 0

indicates the it was answered incorrectly.

Let k be the total number of items in the item pool for an educational test, and let

A = {1, · · · , k} represent the indices of these items. Under a MIRT model, each item

j ∈ A is associated with a multidimensional item parameter (zj, bj), which quantifies item

properties such as the item’s difficulty and the skills it measures. The test taker is associated

with a latent trait parameter θ ∈ Rp, typically interpreted as proficiency in p different skills.
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Given the selected items and the test-taker’s latent trait parameter, responses are assumed

to be conditionally independent. The correct response probability P (θ; zj, bj), also known

as the item response function (IRF) of item j, is a function of θ and depends on (zj, bj).

For example, the commonly adopted multidimensional two-parameter logistic model (M2PL)

assumes that the IRF takes the form

P (θ; zj, bj) = {1 + exp(−zT
j θ − bj)}−1, (36)

where zj is the discrimination parameter, indicating the strength of each latent trait’s influ-

ence on the response, and −bj is the difficulty parameter of item j.

Item selection is critical for efficient CAT design. The objective is to accurately estimate

the latent trait parameter θ ∈ Rp by selecting the next item an+1 ∈ A based on previously

selected items and responses a1, X1, · · · , an, Xn. Note that item parameters are typically

pre-calibrated based on historical data and are assumed to be known in CAT. In the rest of

the section, we provide details on applying the item selection rules GI0 and GI1 under the

M2PL model. First, the density function is fθ,a(x) = P (θ; za, ba)
x(1− P (θ; za, ba))

1−x, and

the corresponding Fisher information is

Ia(θ) = P (θ; za, ba)(1− P (θ; za, ba))zaz
T
a and I(θ;an) =

∑
a∈A

πn(a)Ia(θ). (37)

If the criterion function Gθ(·) = Φq(·), then GI1 can be simplified as:

an+1 = argmax
a∈A

P (θ̂ML
n ; za, ba)(1− P (θ̂ML

n ; za, ba)) · zT
a

(
I(θ̂ML

n ;an)
)−q−1

za. (38)

Algorithm 5 Simplified GI0/GI1 Algorithm for M2PL model

We modify the following lines in Algorithms 1 and 2, while keeping the other lines of

the algorithms unchanged.

2: Require: dim(span{za; a ∈ A}) = p and choose a01, · · · , a0n0
such that

dim(span{za0n
;n = 1, 2, · · · , n0}) = p.

6: The Fisher information matrices used in line 6 of Algorithms 1 for GI0 are calculated

using the formula (37). Selection in line 6 of Algorithms 2 for GI1 is replaced by (38).

Corollary 5.2. Assume Assumption 1 holds, dim(span{za; a ∈ A}) = p, and criterion

function Gθ(·) = Φq(·). If we consider simplified Algorithm 5 for GI0 and GI1 with M2PL

model, then the conclusions for GI0 and GI1 from all the theorems presented in Section 4.2

hold.
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5.3 Sequential Rank Aggregation from Noisy Pairwise Compari-

son

Consider the problem of determining the global rank over p+1 objects. Let A ⊂ {(j, l); j, l ∈
{0, 1, 2, . . . , p}} be a subset of all possible pairs for comparison. At each time n, a pair

an = (an,1, an,2) ∈ A is chosen for comparison, yielding a random pairwise comparison

outcome Xn ∈ {0, 1}. Here, Xn = 1 indicates that the object an,1 is preferred over an,2 in

the comparison, and Xn = 0 indicates the opposite. To infer the global rank of objects,

ranking models (e.g., Bradley-Terry-Luce (BTL) model (Bradley and Terry, 1952; Duncan,

1959) and the Thurstone model (Thurstone, 1927)) are usually assumed for the noisy pairwise

comparison results. These models assume that each object i is associated with a latent score

parameter θi, the pairwise comparison result between object i and object j is depending on

θi and θj, and the true global rank is the rank of the latent score parameters. For example,

the BTL model assumes

fθ,a(x) =

(
eθi

eθi + eθj

)x(
eθj

eθi + eθj

)1−x

(39)

for the pair a = (i, j). For sequential rank aggregation, the goal is to design an active pair

selection rule that determines the next pair an+1 for comparison based on the prior pair

comparison results (a1, X1, · · · , an, Xn), so that the global rank can be inferred accurately.

This problem boils down to the active sequential estimation of the latent score parameters.

In the rest of the section, we elaborate on the implementation and theoretical results for

GI0 and GI1 for the sequential rank aggregation problem under a BTL model. Note that the

distribution of the comparison results only depends on the differences θi−θj for 0 ≤ i, j ≤ p.

Thus, we fix θ0 = 0 to ensure the identifiability of θ = (θ1, . . . , θp)
T .

When a = (i, j), we set za = ej − ei, where {e1, · · · , ep} is the standard basis of Rp and

e0 = 0p.

For a = (i, j), the Fisher information and the weighted Fisher information are given by

Ia(θ) =
eθi−θj

(1 + eθi−θj)2
zaz

T
a , and I(θ;an) =

∑
a=(i,j)∈A

πn(a)
eθi−θj

(1 + eθi−θj)2
zaz

T
a . (40)

If we take the criterion function Gθ(·) = Φq(·), GI1 can be simplified as

an+1 = argmax
a∈A

ez
T
a θ̂ML

n

(1 + ezT
a θ̂ML

n )2
zT
a

(
I(θ̂ML

n ;an)
)−q−1

za. (41)

We treat V = {0, 1, · · · , p} as vertices and A as the set of edges. Then, G = (V,A) is an
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undirected graph. Assume that G is a connected graph. This condition ensures that θ is

identifiable when all the pairs in A are compared. Under this condition, it is possible to

select A0 = {a01, a02, · · · , a0n0
} ⊂ A so that (V,A0) is a connected subgraph of G.

Algorithm 6 Simplified GI0/GI1 Algorithm for BTL model

We modify the following lines in Algorithms 1 and 2, while keeping the other lines of

the algorithms unchanged.

2: Require: The subgraph (V, {a01, · · · , a0n0
}) is a connected graph.

6: The Fisher information matrices used in line 6 of Algorithms 1 for GI0 are calculated

using the formula (40). Selection in line 6 of Algorithms 2 for GI1 is replaced by (41).

Corollary 5.3. Assume that Assumption 1 holds, G is a connected graph, and the criterion

function Gθ(·) = Φq(·). If the above Algorithm 6 for GI0 or GI1 is used, then the conclusions

for GI0 and GI1 from all the theorems presented in Section 4.2 hold.

6 Technical Challenges, New Analytical Tools and a

Proof Sketch for Theorem 4.3

In this section, we highlight the key technical challenges in proving Theorem 4.3 and in-

troduce new analytical tools to address these challenges. The primary challenge lies in

demonstrating that GI0/GI1 effectively balances the trade-off between exploration and ex-

ploitation, a well-known concept in the literature on sequential decision making involving

unknown parameters. Exploration means sufficient sampling of all relevant experiments

to ensure consistent parameter estimation. Exploitation means optimally sampling exper-

iments once the parameter has been accurately estimated. Below, we discuss these two

facets—exploration and exploitation—in the context of active sequential estimation.

6.1 Exploration

In order to have a consistent estimator, the selection rule needs to sample relevant experi-

ments sufficiently often. This is formalized by the following condition,

nI := max
S⊂A:S is relevant

min
a∈S

na → ∞ as n→ ∞, (42)

where na = |{i; ai = a, 1 ≤ i ≤ n}| for a ∈ A. Here, we say that a set of experiments S

is relevant if
∑

a∈S Ia(θ) is nonsingular for any θ ∈ Θ. If S is relevant, then the model
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parameter is identifiable when all the experiments in S are sampled. Equation (42) says

that at least one of the relevant sets of experiments needs to be sampled infinitely often, in

order to have a consistent estimator.

Challenge 6.1. Show that nI → ∞ as n→ ∞ following GI0/GI1.

We note that in related sequential design problems, exploration is usually achieved by

incorporating an extra exploration step in the experiment selection rule. For example, in

active sequential hypothesis testing problems (see, e.g., Chernoff (1959); Naghshvar and Ja-

vidi (2013)), a two-stage algorithm is often utilized, where the first stage is designed for

exploration and the second stage is designed for exploitation. Another prevalent method for

ensuring sufficient exploration is the use of the epsilon-greedy algorithm in reinforcement

learning and multi-armed bandit (MAB) problems, where all available experiments are sam-

pled with a minimum probability of ε. For methods that incorporate an explicit exploration

component, verifying (42) is usually straightforward. However, for algorithms like GI0/GI1,

which are greedy and lack an additional exploration component, proving (or disproving)

Equation (42) is much more challenging.

Nevertheless, we tackle Challenge 6.1 and establish the following proposition concerning

sufficient exploration for GI0 and GI1.

Proposition 6.2. Under regularity conditions described in Section 4.1, both GI0 and GI1

satisfy that lim infn→∞
nI

n
> 0.

Below, we discuss the heuristic ideas for justifying the above proposition, while clar-

ifying the rigorous proof is much more involved. Let Amax = argmaxa∈A na be the set

of experiments that are most frequently selected. A key observation is that the inverted

Fisher information, through its directional derivatives in experiment selection rules, acts as

a regularizer, which means that if nmax/nI is large enough, then we can show that

∂lamFθ̂n
(πn) > ∂la′Fθ̂n

(πn) (43)

for all am ∈ Amax and some a′ /∈ Amax, where

∂laFθ̂n
=
〈
πa

n+1 − πn,
∂

∂π
Gθ̂n

[{∑
a∈A

π(a)Ia(θ̂n)
}−1]∣∣

π=πn

〉
denotes the directional derivative along the direction la = πa

n+1 − πn. This implies that no

action from Amax will be selected and the ratio nI/n is bounded from below, if we follow

the experiment selection rule an+1 ∈ argmina∈A ∂laFθ̂n
(πn). According to Equation (7) and
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additional asymptotic analysis, this experiment selection rule based on directional derivatives

is asymptotically equivalent to GI0 and GI1, and, consequently, Proposition 6.2 holds.

Note that (43) itself is challenging to prove, for which we first prove that the following

decomposition of the information holds: Σ̂n = I(θ̂n;an) = A+E, and A,E satisfy:

1. A =
∑

a∈A,na
n

≥U
na

n
Ia(θ̂n) and E =

∑
a∈A,na

n
<U

na

n
Ia(θ̂n), for some U > 0.

2. A is a singular and positive semidefinite matrix.

3. E is a positive semidefinite matrix and the maximum eigenvalue of E is much smaller

than the smallest non-zero eigenvalue of A.

4. There exists a′ ∈ A such that na′ ≤ nI and Ia′(θ̂n) /∈ R(A), where R(A) denotes the

column space of A. This implies

lim inf
∥E∥→0

tr
[
∇Gθ̂n

(
Σ̂n

)
(A+E)−1Ia′(θ̂n)(A+E)−1

]
= ∞.

5. For all am ∈ Amax, Iam(θ̂n) ∈ R(A). This implies

lim sup
∥E∥→0

tr
[
∇Gθ̂n

(
Σ̂n

)
(A+E)−1Iam(θ̂n)(A+E)−1

]
<∞.

We treat A as the dominating term and E as a small perturbation when using the above

matrix decomposition. With additional matrix perturbation analysis of Σ̂−1
n = (A + E)−1

around its non-continuous pointA, a careful use of the Davis-Kahan sinΘ theorem (Yu et al.,

2015), and additional iterative analysis, we can show that tr
[
∇Gθ̂n

(Σ̂n)Σ̂
−1
n Ia′(θ̂n)Σ̂

−1
n

]
>

tr
[
∇Gθ̂n

(Σ̂n)Σ̂
−1
n Iam(θ̂n)Σ̂

−1
n

]
for all am ∈ Amax. This, along with Equation (7) implies

(43).

6.2 Exploitation

In active sequential estimation, optimal exploitation requires frequency of the selected ex-

periments to approximate the optimal proportion π∗ = argminπ∈SA Gθ∗({Iπ(θ∗)}−1), when

the estimator is accurate enough. In related sequential decision problems, such as active

sequential hypothesis testing, optimal exploitation is commonly attained through a ‘plug-in’

method. This method assumes the estimator is accurate and replaces θ∗ with the estimator

for calculating the proportion for the subsequent sampling. The ‘plug-in’ method’s the-

oretical analysis usually combines the consistency result with the optimization problem’s

continuity. However, this approach does not work for GI0/GI1 algorithms, which optimize
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one-step-ahead information gain over the discrete set A, rather than the probability simplex

SA. Consequently, it is challenging to determine whether GI0/GI1 approximately solve the

long-term optimization problem argminFθ∗(π) over the probability simplex. This issue is

divided into two specific challenges:

Challenge 6.3 (Noiseless case). For GI0 selection (2) and GI1 selection (3) with θ̂1 = θ̂2 =

· · · = θ∗, do we have the convergence limn→∞ Fθ∗(πn) = Fθ∗(π∗)?

Challenge 6.4 (Noisy case). How does the difference between θ̂n and θ∗ affect the conver-

gence of the algorithms?

Challenge 6.3 is roughly addressed using the following arguments. First, we can show

that Fθ∗(·) is convex. By Jensen’s inequality, we obtain that

Fθ∗
(n− 1

n
πn−1 +

1

n
π∗)− Fθ∗(π∗) ≤ (1− 1

n
)
{
Fθ∗(πn−1)− Fθ∗(π∗)

}
.

Notice that by Taylor expansion, for any π ∈ SA,

Fθ∗
(n− 1

n
πn−1 +

1

n
π
)
− Fθ∗(πn−1) =

〈
∇Fθ∗(πn−1),

1

n
π − 1

n
πn−1

〉
+O(1/n2).

The first term on the right-hand side of the above equation is linear in π over the sim-

plex SA. Thus, its minimum is achieved at a point mass at a′ for some a′ ∈ A, i.e.,

π = δa′ := (I(a = a′))a∈A. It can be shown that the solution to the optimization

argmina′∈A
〈
∇Fθ∗(πn−1),

1
n
δa′ − 1

n
πn−1

〉
coincides with the selection rule GI1 if we replace

the MLE with θ∗ (see Equation (3)). Let a0n and a1n be the experiments selected by GI0

and GI1 (with the MLE replaced by the true parameter), respectively. Combining the above

analysis with the definition of GI0, we obtain

Fθ∗(πa0n
n )− Fθ∗(π∗) ≤ Fθ∗(πa1n

n )− Fθ∗(π∗) = min
a′∈A

〈
∇Fθ∗(πn−1),

1

n
δa′ −

1

n
πn−1

〉
+O(1/n2)

≤Fθ∗(
n− 1

n
πn−1 +

1

n
π∗)− Fθ∗(π∗) +O(1/n2) ≤ (1− 1

n
)(Fθ∗(πn−1)− Fθ∗(π∗)) +O(1/n2).

The above display suggests that the distance Fθ∗(πn−1) − Fθ∗(π∗) is reduced at the factor

1 − 1/n for GI0 and GI1 under the noiseless case. With additional iterative analysis, we

can further show that Fθ∗(πn)− Fθ∗(π∗) ≤ O(log n/n). Consequently, the frequency of the

selected experiment converges to the optimal proportion.

On the other hand, the above heuristic analysis does not justify the convergence of the

algorithm in the noisy case (Challenge 6.4), nor does it provide the convergence rate. We

address these challenges by establishing and using a modified Robbins-Siegmund theorem,
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which extends the classic result by Robbins and Siegmund (1971), to the stochastic process

Zn = Fθ∗(πn)− Fθ∗(π∗).

7 Simulation

In this section, we present two simulation studies. The first assesses the finite sample per-

formance of the proposed methods under the setting of Example 1. The second is concerned

with situations where p or |A| is large. Throughout the section, we choose the criterion

function Gθ(Σ) = Φ1(Σ) = tr(Σ) for GI0 and GI1. Due to the page limit, we leave some

detailed specifications and additional simulation results in the supplementary material.

7.1 Simulation Study 1

We first evaluate the performance of the proposed methods under the settings of Example 1.

Specifically, let p = 2, A = {1, 2, 3}, and fθ,1(1) = 1/(1 + e−(−0.1+θ1)), fθ,2(1) = 1/(1 + e−θ2)

and fθ,3(1) = 1/(1 + e−(θ1/2+θ2)). Also, let Θ = [−3, 3]2 in this section.

We start with illustrating the optimal proportion π∗. According to Theorem 4.3, the

optimal proportion for experiment selection is

π∗ = (π∗(1), π∗(2), π∗(3)) = arg min
π∈SA

Fθ∗(π) = arg min
π∈SA

tr
{
Iπ(θ∗)−1

}
. (44)

Note that π∗ is dependent on the true model parameter θ∗. Figure 1 illustrates the de-

pendency between π∗ and θ2 while fixing θ∗1 = 1. From the figure, we see that the optimal

proportion varies as θ2 changes. Additionally, for relatively small θ2, all three experiments

have non-zero optimal proportions. However, for large θ2, π
∗(3) stays at zero, meaning that

experiment a = 3 is unnecessary in this case.

Next, we investigate the empirical proportion of selected experiments following the pro-

posed methods. Recall that the empirical proportion is defined as πn(a) =
1
n

∣∣{i; ai = a, 1 ≤
i ≤ n}

∣∣, for a ∈ {1, 2, 3}. We generate data from the model with the true parameter

θ∗ = (1, 0)T and plot the sample path of πn(a) against different sample size n following

GI0 and GI1 in Figure 3. We clarify that the values of the empirical proportion in the

figure are obtained without averaging. That is, they are based on a Monte Carlo simulation

with only one replication. From Figure 3, we can see that the empirical proportions are

approximating their respective optimal values as n increases, for both GI0 and GI1. This is

consistent with Theorem 4.3, which states that the empirical proportion almost surely con-

verges to the optimal proportion. We also observe that the selections made by GI0 and GI1
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are almost identical. This may be due to the fact that they are asymptotically equivalent

(see Equation (7)), and they are initialized with the same random seed.

Now, we evaluate the estimation accuracy of MLE following the proposed GI0 and GI1,

and compare it with other experiment selection methods. The estimation accuracy is quan-

tified using the estimated MSE, defined as M̂SEn = 1
N

∑N
j=1 ∥θ̂ML

n,j − θ∗∥2, where N = 20000

is the number of Monte Carlo replications and θ̂ML
n,j is the MLE from the j-th Monte Carlo

experiment with the sample size n. We compare GI0 and GI1 with the following experiment

selection rules:

1. Uniform selection (Unif): an+1 is uniformly sampled from A.

2. Random optimal proportion selection (Opt random): an+1 is sampled randomly from

A according to the optimal proportion π∗. That is, P(an+1 = a|Fn) = π∗(a) for a ∈ A.

3. Deterministic optimal proportion selection (Opt deterministic):

an+1 = argmina∈A{πn(a)− π∗(a)}.

We clarify that both Opt random and Opt deterministic methods require knowledge of the

unknown parameter θ∗, so they are not implementable in practice. These methods serve

as ‘oracle’ benchmarks allowing comparison with the proposed methods. Figure 2 depicts

the estimated MSE as a function of the sample size n for different experiment selection

rules. According to the figure, GI0, GI1, and Opt deterministic perform very similarly and

outperform both Unif and Opt random. These findings are consistent with Theorem 4.8.

Finally, we check the finite sample validity of the normal approximation of the MLE.

According to Theorem 4.5 and Theorem 4.11, for large n and small c,

dT θ̂ML
n ± 1√

n
Zα/2

∥∥∥∥{Iπn(θ̂ML
n )
}−1/2

d

∥∥∥∥ and dT θ̂ML
τc ± Zα/2 · c (45)

give approximate 1− α confidence intervals (CIs) for dTθ where d ∈ R2 is nonzero and the

stopping time τc is defined in (9) with h(θ) = dTθ. Table 1 shows the coverage probability

of the above CIs at different sample sizes, following GI0 or GI1, where we set α = 0.05,

d = (−0.5454216,−0.8381619)T and θ∗ = (1, 0)T , based on a Monte Carlo simulation. From

the table, we see that the coverage probability is close to the confidence level 1 − α for

reasonably large n and the random stopping time τc.

We have also performed additional simulation studies and produced histograms of the

estimators. These additional simulation results are given in the supplementary material.
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n 25 50 100 τ0.1
GI0 0.981 0.954 0.951 0.955
GI1 0.977 0.958 0.959 0.938

Table 1: Coverage probability for CIs based on (45), where the number of Monte Carlo
replications is 1000. The Monte Carlo standard error for the values presented in the table is
upper bounded by 0.007626.
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Figure 3: Empirical proportion πn(a) and the optimal proportion π(a) for a = 1, 2, 3.

7.2 Simulation Study 2

In our theoretical results, we assumed that |A| and p are fixed and n grows to infinity. In this

simulation study, we investigate the impact of large |A| and p on the computational time and

the performance of the proposed methods. Consider the sequential rank aggregation problem

described in Section 5.3. We simulate the pairwise comparison results from a BTL model

(see Equation (39)). Each coordinate of the true value of θ ∈ Rp are sampled independently

from a uniform distribution U(−2, 2). We vary the value of p and |A|, with p and |A| ranging
from 25 to 500 and from p to p(p+1)

2
, respectively. The computation time is given by Table 2.
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p = 25 p = 50
k = 25 k = 52 k = 325 k = 50 k = 102 k = 1275

GI1 non-parallel 0.676 sec 0.430 sec 0.416 sec 0.963 sec 0.489 sec 1.046 secs
GI0 parallel 1.328 secs 1.070 secs 1.784 secs 1.639 secs 1.963 secs 10.296 secs

GI0 non-parallel 1.079 secs 1.325secs 4.790 secs 3.202 secs 5.030 secs 33.430 secs
p = 100 p = 500

k = 100 k = 202 k = 5050 k = 500 k = 1002 k = 125250
GI1 non-parallel 2.028 secs 1.358 secs 10.758 secs 1.387 mins 57.900 secs 2.03 hours
GI0 parallel 6.736 secs 9.594 secs 3.240 mins 34.322 mins 1.168 hours 6 days

GI0 non-parallel 19.45 secs 35.065 secs 12.992 mins 1.925 hours 3.843 hours about 20 days

Table 2: The computation time for solving the MLE and selecting a new experiment at a
single time point, based on 100 Monte Carlo replications, is recorded for the non-paralleled
GI1 algorithm as well as for the non-paralleled and paralleled versions of the GI0 algorithm.
For each value of p, k = |A| takes values in p, 2(p + 1), and p(p+1)

2
. All computations are

carried out on a MacBook Pro (13-inch, 2019) equipped with a 1.4 GHz Quad-Core Intel
Core i5 processor.

Based on Table 2, the non-paralleled GI1 is much faster than both the non-paralleled and

paralleled GI0 when both p and |A| are large. This is consistent with Lemma 3.1.

We also perform additional Monte Carlo simulations to assess the estimation accuracy of

the proposed methods, and to study how the choice of r in Θ = [−r, r]p affects the accuracy.
Due to the page limit, details of these additional simulation studies are postponed to the

supplementary material.

8 Real Data Example

We apply the proposed methods to a sushi preference dataset (Maystre and Grossglauser,

2017). This dataset contains feedback from 5,000 participants who ranked 10 different types

of sushi, selected from a total of 100 types of sushi. Similar to the data pre-processing steps

in Maystre and Grossglauser (2017), we first transform each 10-item ranking into pairwise

comparison results, yielding
(
10
2

)
× 5000 = 225000 pairwise comparison results. We fit the

BTL model described in Equation (39) with Θ = [−3, 3]p using all pairwise comparison data

and treat the MLE of θ as the ground truth. Under this setting, p = 99, and |A| = 4809.

We note that |A| <
(
100
2

)
due to the absence of comparisons for some pairs in the dataset.

We vary the sample size n and compare the performance of the proposed GI0 and GI1

with two other experiment selection methods: uniform sampling and uncertainty sampling.

Uncertainty sampling is a popular approach for active learning. In the context of sequential

rank aggregation (see Maystre and Grossglauser (2017)), uncertainty sampling refers to
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sampling the pair that is most difficult to distinguish. That is,

an+1 = argmax
a∈A

[
min{1− fθ̂n,a(1), fθ̂n,a(0)}

]
= arg min

a=(i,j)∈A
{|θ̂n,i − θ̂n,j|}. (46)

The performance of the experiment selection rules is measured through the Kendall’s τ

correlation, which is often used to measure the accuracy of ranking algorithms. Specifically,

define Kendall’s τ correlation as

τ(θ̂n,θ
∗) =

(
100

2

)−1 ∑
1≤i<j≤100

sign(θ̂n,i − θ̂n,j) · sign(θ∗
i − θ∗

j ),

where sign denotes the sign function, θ̂n denotes the MLE based on n observations, and θ∗

is the ground truth obtained using the MLE based on all 225000 comparisons.

Figure 4 illustrates the Kendall’s τ coefficient for GI0, GI1, uniform selection and uncer-

tainty sampling for different number of comparisons n, based on a Monte Carlo simulation

with 100 replications. From Figure 4, GI0 and GI1 behave similarly, and both outperform

uniform selection and uncertainty sampling. Additional details of the Monte Carlo simula-

tion are provided in the supplementary material.
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9 Conclusion and Further Discussion

In this study, we consider the problem of efficient sequential design for active sequential

estimation. This problem has widespread applications across different fields; however, a

systematic statistical analysis is lacking for the multidimensional case. We introduce a

class of experiment selection rules that not only covers existing methods but also presents

new approaches with improved numerical efficiency. Furthermore, we provide theoretical

analysis including the consistency, asymptotic normality, and asymptotic optimality of the

MLE following the proposed selection rule. These findings are also extended to scenarios

involving early stopping rules, which are commonly used in practice. The theoretical results

are highly non-trivial, and standard techniques in the literature of sequential decision making

and stochastic control are not applicable. We have developed new analytical tools to tackle

the theoretical challenges, which are important on their own and may be reused for other

related problems.

The current study can be extended in several directions. First, in some applications,

different experiments are associated with varying sampling cost. The current method may

be extended to incorporate the sampling cost in the experiment selection rules. We expect

similar analytical tools can be used in the theoretical analysis. Second, theoretical results can

be extended to the case where p and k slowly grow to infinity as n grows. On the other hand,

the consistency results do not hold under the high-dimensional setting where p ≥ n. Some

modifications to the estimation and experiment selection methods are necessary to ensure

valid statistical inference in this case. Third, nuisance parameters may be present in some

applications, where we are only interested in estimating part of the parameter efficiently. In

this case, the proposed GI0 and GI1 still lead to a consistent and asymptotically normal

MLE. However, the estimator may be asymptotically inefficient when there are redundant

experiments measuring nuisance parameters. Of interest is how to design an experiment

selection rule and an estimator to achieve asymptotic optimality. This is worth further

investigation.
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Supplement to “Globally-Optimal Greedy Experiment

Selection for Active Sequential Estimation”

This supplement contains additional simulation results, specifications for simulation and real

data analysis, and technical proof for all the theoretical results.

10 Detailed Specifications for Simulation Studies

In this section, we provide detailed specifications for the simulation studies in Section 7.

Recall that Gθ(Σ) = tr(Σ) throughout the simulation study.

10.1 Detailed Specifications for Section 7.1

10.1.1 Algorithm for Solving the Optimal Optimal Selection Proportion

To solve the optimal selection proportion π∗ numerically, we apply the projected gradient

descent algorithm over the simplex SA (see, e.g., Chen and Ye (2011)). Let PSA denote the

projection operator onto the simplex SA. Initializing π0 = (1
3
, 1
3
, 1
3
), the iterative algorithm

is given by

πn+1 = PSA(πn − η∇Fθ∗(πn)),

where the learning rate η is set to 0.001 and the maximum number of iterations is set to

10000.

10.1.2 GI0 and GI1 Implementation

When implementing GI0 and GI1, the first two lines of the algorithm requires the input θ̂0

and a01, · · · , a0n0
. Here we specify θ̂0 = (0, 0)T , n0 = 9, and a1 = a4 = a7 = 1, a2 = a5 = a8 =

2, and a3 = a6 = a9 = 3.

Additionally, the MLE is solved using the R function glmnet function from the R package

glmnet with the constraint Θ = [−3, 3]2.

10.1.3 Coverage Probability for CIs

The coverage probability of confidence intervals described (45) is estimated as follows:

1

N

N∑
j=1

I
(
|dT θ̂j

n − dTθ∗| ≤
Zα/2√
n

∥∥∥∥{Iπn(θ̂ML
n )
}−1/2

d

∥∥∥∥), for n ∈ {25, 50, 100},
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and
1

N

N∑
j=1

I
(
|dT θ̂j

τc − dTθ∗| ≤ Zα/2 · c
)
,

where N = 1000 is the number of Monte Carlo simulation, θ̂j and θ̂j
τc are the MLE obtained

in the j-th Monte Carlo replication with the sample size n and τc, respectively.

10.2 Detailed Specifications for Section 7.2

Let Θ = [−3, 3]p. To solve for the MLE (constrained in Θ), we use the glmnet function

from the R package glmnet. The computation time shown in Table 2 is determined using

RStudio.

10.2.1 Sampling of A

For a sequential rank aggregation problem under a BTL model, the graph G =

({0, · · · , p},A) needs to be a connected graph for the identifiability of the model param-

eter (see Corollary 5.3). This implies that A needs to satisfy some condition rather than

being an arbitrary set of pairs to ensure the identifiability of the problem. Below we describe

the random sampling scheme of A used in the Monte Carlo simulation which ensures the

connectivity of G. Note that |A| ∈ {p, 2(p+ 1), p(p+1)
2

} in the simulation study.

• If |A| = p(p+1)
2

, G is a fully connected graph, meaning thatA collects all the pairs among

the p+ 1 objects. In this case, A is fixed throughout the Monte Carlo simulation.

• If |A| = p, a connected G is equivalent to that G is a minimal spanning tree for a

fully connected graph. In this case, we sample G uniformly from all minimal span-

ning trees in the Monte Carlo simulation. This is implemented using the function

sample spanning tree from the R package igraph.

• If |A| = 2(p + 1), we restrict G to be 4-regular, which means that each node from

{0, 1, · · · , p} has exactly 4 neighbors. In this case, we sample G uniformly from all

4-regular graphs. This is implemented using the function sample k regular from the

R package igraph.

10.2.2 Initial estimator θ̂0 and experiments a01, · · · , a0n0

For implementing GI0 and GI1, we set θ̂0 = 0 in Algorithms 6.

According to Corollary 5.3 in Section 5.3, the initial experiments needs to be selected

so that G0 = ({0, · · · , p}, {a01, · · · , a0n0
}) is a connected subgrpah of G. Here, elements of
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{a01, · · · , a0n0
} are not necessary to be distinct. Throughout the Monte Carlo simulation, we

set n0 = 4p, and sample G0 randomly using the following steps and collect the edges in G0

to form the set of initial experiments {a01, · · · , a0n0
}.

Step 1: Sample uniformly from all the minimal spanning trees from G, which is implemented

using the R function sample spanning tree. Let ({0, · · · , p}, {atree1 , · · · , atreep }) denote
the sampled tree.

Step 2: Randomly sample 3p pairs from A without replacement. Let {a′p+1, · · · , a′4p} denote

all sets of pairs (possibly repeated) sampled from this step.

Step 3: {a01, · · · , a0n0
} = {atree1 , · · · , atreep , a′p+1, · · · , a′4p} collects all the edges generated in the

first and second steps.

Among the steps mentioned above, the first step yields a connected subgraph of G with p

edges, and the second step expands this subgraph into another connected subgraph to have

at most p+ 3p = 4p edges.

10.2.3 Algorithm Acceleration

The accelerated GI1 algorithm (as described in Algorithm 3) is employed for GI1 selection,

because in sequential rank aggregation problem the information matrix can be decomposed

into a structure that is both sparse and of low rank with s = 2 (see Lemma 3.1). To accelerate

GI0 Algorithm 6, we parallel the calculation of (2) when |A| is large.

11 Detailed Specifications for the Real Data Analysis

in Section 8

11.1 Data Structure

The transformed dataset contains 225000 pairwise comparison results. We list these compar-

ison results as the dataset D = {(a(i), X(i))}Ti=1, where T = 225000, a(i) indicates the pairs

to compare and X(i) is binary, indicating the corresponding pairwise comparison result. We

note that D is a multiset, meaning that it may have repeated elements.

11.2 Sequential Sampling of the Pairwise Comparison Data

We note that, for the real data analysis, each element in the data set D is sampled at most

once, to prevent the redundancy of using the same data points multiple times. As a result,
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when we implementing an active sampling scheme for the real data analysis, we will always

sample elements from D without replacement.

Specifically, for all the experiment selection methods compared in this section, we set

n0 = p = 99, and generate the initial experiments {a01, · · · , a0n0
} randomly following the Step

1 procedure in Section 10.2.2. For each j ∈ {1, 2, · · · , n0}, we sample the initial pairwise

comparison results as follows: we sample sj uniformly from {i : a(i) = a0j , 1 ≤ i ≤ T}. Then,
the initial pairs and comparison results are given by (a(s1), X(s1)), · · · (a(sn0 ), X(sn0 )). This

gives the initial data (a01, X1), · · · , (a0n0
, Xn0).

Let Sn0 = {s1, · · · , sn0}, [T ] = {1, 2, · · · , T}. For each S ⊂ [T ], define

AS = {a(i) ∈ A : i ∈ [T ]\S}.

Next, we provide details of the implementation of different adaptive pair selection rules for

n > n0.

Uniform sampling: For n = n0, · · · , T − 1, sample sn+1 uniformly from [T ] \ Sn. Let Sn+1 = Sn ∪ {sn+1}.
The (n+ 1)−th pair and comparison result (an+1, Xn+1) is given by (a(sn+1), X(sn+1)).

GI0 and GI1: For n = n0, · · · , T − 1, calculate an+1 according to (2) and (3) with A replaced by

ASn for GI0 and GI1, respectively. Next, we uniformly sample the index sn+1 from

{i ∈ [T ]\Sn : a(i) = an+1}. Let Sn+1 = Sn ∪ {sn+1}. The (n + 1)−th pair and

comparison result (an+1, Xn+1) is given by (a(sn+1), X(sn+1)).

Uncertainty sampling: For n = n0, · · · , T − 1, calculate an+1 according to (46) with A replaced by ASn .

Next, we uniformly sample the index sn+1 from {i ∈ [T ]\Sn : a(i) = an+1}. Let

Sn+1 = Sn ∪ {sn+1}. The (n+ 1)−th pair and comparison result (an+1, Xn+1) is given

by (a(sn+1), X(sn+1)).

11.3 Specifications for the Monte Carlo Experiments

For Figure 4, we perform a Monte Carlo simulation with 100 replications. For each repli-

cation, we sample 99 pairs of comparisons at random for initialization, and then perform

sequential sampling for following different methods using the initialization and sampling

method described in Section 11.2. We specify Gθ(Σ) = tr(Σ) for implementing GI0 and GI1

and Θ = [−3, 3]p to solve the MLE.

12 Additional Simulation Results

In this section, we present additional simulation results.
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12.1 Additional Simulation Results for Simulation Study 1

Let the true value θ∗ = (1, 0)T . The initial estimator θ̂0, n0, and experiments {a01, · · · a0n0
}

are selected according to Section 10.1.2. Let the sample size n = 50. Define

Zj
1 =

√
N(θ̂j1 − θ∗1)(

eT
1 {Iπn(θ̂j

n)}−1e1

)1/2 and Zj
2 =

√
N(θ̂j2 − θ∗2)(

eT
2 {Iπn(θ̂j

n)}−1e2

)1/2 ,
where θ̂j

n = (θ̂j1, θ̂
j
2)

T represents the MLE of θ based on j−th Monte Carlo replication, and

N = 1000 is the number of Monte Carlo replications. That is, Zj
1 and Zj

2 are i.i.d. copies of

Z1 =
√
N(θ̂1−θ∗1)(

eT1 {Iπn (θ̂n)}−1e1

)1/2 and Z2 =
√
N(θ̂2−θ∗2)(

eT2 {Iπn (θ̂n)}−1e2

)1/2 . In Figure 5, we plot the histogram

for {Zj
1}Nj=1 and {Zj

2}Nj=1 following GI0 and GI1.

Histogram for GI0

De
ns

ity

−2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

Histogram for GI0
De

ns
ity

−3 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

Histogram for GI1

De
ns

ity

−2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

Histogram for GI1

De
ns

ity

−2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

Figure 5: Histograms for {Zj
1}Nj=1 and {Zj

2}Nj=1 following GI0 and GI1, and the density
curve for the standard normal distribution. The upper left and bottom left panels show the
histogram of {Zj

1}Nj=1 following GI0 and GI1, respectively. The upper right and bottom right

panels show the histogram of {Zj
2}Nj=1 following GI0 and GI1, respectively.
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In Figure 5, the histogram closely approximates the standard normal density curve. This

is consistent with Theorem 4.4.

12.2 Additional Simulation Results for Simulation Study 2

The theoretical results in the manuscript assume that p and |A| are fixed while the sample

size n grows large. In this section, we investigate the performance of the proposed method

when p and |A| are comparable with n, and this condition is violated. We investigate the

performance of the proposed methods under a sequential rank aggregation problem assuming

a BTL model.

We consider the following simulation settings. Set p = 10 or 50. Entries of θ∗ are i.i.d.

and generated from U(−2, 2). |A| = 2(p+1), and A is sampled uniformly from all 4-regular

graphs (see Section 10.2.1). The initial estimator and experiments are selected in the same

way as those in Section 10.2.2 except that n0 is set as 2p instead of 4p.

12.2.1 Empirical and Optimal Frequency

We plot the expected value of Fn = Fθ∗(πn) − Fθ∗(π∗) for different methods in Figure 6

based on N = 1000 Monte Carlo replications. Here, the optimal proportion π∗ is computed

according to Section 10.1.1. From the Figure 6, we see that Fn is approaching zero when n is

large. This is consistent with Theorem 4.3. However, it is far from zero when p is comparable

with n (e.g., p = 50 and n = 150). This is expected as it becomes a high-dimensional problem

under this setting.
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Figure 6: Comparison of Fn for different selection methods (GI0, GI1, Unif selections) and
different sample size n. The left panel and the right panel show Fn with p = 10 and p = 50,
respectively.
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12.2.2 Estimation Accuracy
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Figure 7: Comparison of performance of MSE for different selection methods (GI0, GI1,
uniform selections) for the rank aggregation problem. The left panel and the right panel
show MSE with p = 10 and p = 50, respectively.

In Figure 7, we plot the MSE for the MLE at different sample size n following different

experiment selection methods based on N = 10000 Monte Carlo replications. The MSE is

not close to zero when p is relatively large compared to n, which is expected. However, GI0

and GI1 still perform much better when compared with Unif.

12.2.3 Impact of the Choice of Θ

In our theoretical results, we assume the true parameter θ∗ is an inner point of Θ. In this

section, we study the impact of the choice of Θ on the estimation accuracy. We consider the

following simulation setting: p = 50, each element of θ∗ is sampled i.i.d. from U(−2, 2), A
is randomly sampled from all 4−regular graphs with N = 100 Monte Carlo simulations. As

a result, |A| = 102. We consider 4 choices of Θ when solving for the MLE: Θ = [−1, 1]p,

Θ = [−2, 2]p, Θ = [−3, 3]p and Θ = [−5, 5]p. The initial sample size is set to n0 = p.

In Figure 8, we compare the Kendall’s correlation of the MLE following GI1 for different

choices of Θ, and obtain the following findings.

1. For cube 2 (Θ = [−2, 2]p), it coincides with the data generation distribution U(−2, 2).

The Kendall’s τ correlation is the largest among all cubes and sample sizes.

2. For cube 1 (Θ = [−1, 1]p), it does not satisfy the condition θ∗ ∈ Θ for the theoretical

results. For small sample size (n < 500), it performs similarly as cube 2. However, for

larger n, it’s performance becomes worse.
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3. For cube 3 and cube 5 (Θ = [−3, 3]p and Θ = [−5, 5]p), they cover the true model

parameter, but are larger than the support of sampling distribution of θ∗. For small

sample size, the larger the cube, the poorer the performance is. However, as the sample

size increases, the performance becomes better than cube 1.

4. Overall, the choice of r in Θ = [−r, r]p does not seem affect the overall trend between

Kendall’s correlation and sample size.
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Figure 8: Comparison of Performance of Different Compact Cubes with GI1 Selection for the
Rank Aggregation Problem. The curves for Cube1, Cube2, Cube3, and Cube5 represent
the plot of Kendall’s τ correlation versus sample size over compact cubes Θ = [−1, 1]p,
Θ = [−2, 2]p, Θ = [−3, 3]p, and Θ = [−5, 5]p, respectively.

13 Preliminary Theoretical Results and Supporting

Lemmas

In this section, we present preliminary theoretical results and supporting lemmas which are

useful for the rest of the theoretical analysis. Moreover, they may be useful for other problems

involving the analysis of stochastic processes, functions of matrices, and linear algebra for

spaces indexed by a parameter.
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13.1 Useful Results for the Convergence of Stochastic Processes

The next lemma extends the classic Kolmogorov’s three-series theorem with relaxed moments

and independence conditions. It is useful for proving almost sure convergence results for

dependent stochastic processes.

Lemma 13.1 (Modified Kolmogorov’s three-series theorem). Consider nested σ−fields Fn ⊂
Fn+1, n ≥ 0. Let {Xn}∞n=1 and {εn}∞n=1 be two sequences of random variables, adaptive to

{Fn}∞n=1, respectively. Consider a sequence of events En such that

P(lim inf
n

En) = P

(
∞⋃
n=1

∞⋂
m=n

Em

)
= 1.

If there exists 0 < γ ≤ 1 such that,

E[|Xn|γIEn | Fn−1] ≤ εn−1 a.s., and,
∞∑
n=0

Eεn <∞,

then
∑∞

n=1Xn converges almost surely.

Proof of Lemma 13.1. Let SN =
∑N

n=1Xn. It is sufficient to show that with probability 1,

lim
m→∞

sup
n,l≥m

|Sn − Sl| = 0.

Applying Cr inequality (see 9.1.a in Lin (2010)), for any 0 < γ ≤ 1, k ≥ 1, we have∣∣∣∣∣
k∑

i=1

Xm+i

∣∣∣∣∣
γ

≤
k∑

i=1

|Xm+i|γ .

For any m ∈ N, and ε > 0, applying Cr inequality (see 9.1.a in Lin (2010)) and Markov
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inequality, we have

P
(

sup
n,l≥m

|Sn − Sl| ≥ 2ε

)
≤P

(
2 sup

k∈N

∣∣∣∣∣
k∑

i=1

Xm+i

∣∣∣∣∣ ≥ 2ε

)

=P

(
sup
k∈N

∣∣∣∣∣
k∑

i=1

Xm+i

∣∣∣∣∣
γ

≥ εγ

)

≤P

(
sup
k∈N

k∑
i=1

|Xm+i|γ ≥ εγ

)

≤P

({
sup
k∈N

k∑
i=1

|Xm+i|γ ≥ εγ

}⋂(
∞⋂

n=m+1

En

))
+ P

(
∞⋂

n=m+1

En

)

≤ lim sup
k→∞

P

(
k∑

i=1

|Xm+i|γ I
( ∞⋂
n=m+1

En

)
≥ εγ

)
+ P

(
∞⋂

n=m+1

En

)

≤ lim sup
k→∞

P

(
k∑

i=1

|Xm+i|γ I
(
Em+i

)
≥ εγ

)
+ P

(
∞⋂

n=m+1

En

)

≤ lim sup
k→∞

1

εγ

k∑
i=1

E[E
{
|Xm+i|γIEm+i

| Fm+i−1

}
] + P

(
∞⋂

n=m+1

En

)

≤ 1

εγ

∞∑
i=1

Eεm+i−1 + P

(
∞⋂

n=m+1

En

)
,

where we used the assumption E[|Xn|γIEn | Fn−1] ≤ εn−1 for all n for obtaining the last

inequality. Notice that

lim
m→∞

P

(
∞⋂

n=m+1

En

)
= 1− lim

m→∞
P

(
∞⋂

n=m+1

En

)
= 1− P

(
∞⋃

m=1

∞⋂
n=m+1

En

)
= 0.
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Let m→ ∞, we obtain that for all ε > 0,

P

(⋂
m≥1

{
sup
n,l≥m

|Sn − Sl| ≥ 2ε

})

= lim
m→∞

P
({

sup
n,l≥m

|Sn − Sl| ≥ 2ε

})
≤ 1

εγ
lim

m→∞

∞∑
i=1

Eεm+i−1 + lim
m→∞

P

(
∞⋂

n=m+1

En

)
=0

This implies P
(⋂

m≥1

{
supn,l≥m |Sn − Sl| ≥ 2ε

})
= 0 and completes the proof.

Next, we extends Theorem 2.19 in Hall and Heyde (1980) obtain a law of large number

result for martingale differences which allows for adaptive experiment selection.

Lemma 13.2 (Modified Theorem 2.19 in Hall and Heyde (1980)). Let {Xn}∞n=1 be a sequence

of random variables and {Fn}∞n=1 be an increasing sequence of σ−fields with Xn measurable

with respect to Fn for all n. Let {an}∞n=1 denote a sequence of discrete random variables,

where each variable takes values from the set {1, 2, . . . , k}. Let X1, · · · , Xk be a sequence of

random variables such that max1≤a≤k E|Xa| <∞. If the conditional distribution function of

Xn|Fn−1, an = a is the same as the distribution function Xa with probability 1, then

n−1

n∑
i=1

{Xi − E (Xi | Fi−1)}
a.s.−→ 0. (47)

Proof of Lemma 13.2. Let Yn = XnI{|Xn|≤n}, n ≥ 1.

Note that E|Xa| <∞ for any 1 ≤ a ≤ k, and for any x > 0,

P(|Xn| > x) = E P(|Xn| > x|Fn−1) = E
k∑

a=1

P(|Xn| > x|Fn−1, an = a)P(an = a|Fn−1)

=E
k∑

a=1

P(|Xa| > x)P(an = a|Fn−1) ≤
k∑

a=1

P(|Xa| > x) <∞.

Similar to the proof of Theorem 2.19 in Hall and Heyde (1980), we obtain that

∞∑
n=1

1

n2
E[{Yn − E(Yn|Fn−1)}2] ≤ 2

∞∑
n=1

1

n2

∫
0<x≤n

xP(|Xn| > x)dx

≤2
k∑

a=1

∞∑
n=1

1

n2

∫
0<x≤n

xP(|Xa| > x)dx ≤ 4
k∑

a=1

∞∑
i=1

P(|Xa| > i− 1) <∞,
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n−1

n∑
i=1

{Yi − E (Yi | Fi−1)}
a.s.−→ 0,

∞∑
n=1

P(Xn ̸= Yn) =
∞∑
n=1

P(|Xn| > n) ≤
k∑

a=1

∞∑
n=1

P(|Xa| > n) <∞

and

n−1

n∑
i=1

{Xi − E (Yi | Fi−1)}
a.s.−→ 0. (48)

Notice that with probability 1, as n→ ∞,

E( |Xn|I(|Xn| > n)| Fn−1)

=

∫ ∞

n

P(|Xn| > x | Fn−1)dx

=

∫ ∞

n

k∑
a=1

P(|Xn| > x | Fn−1, an = a)P(an = a|Fn−1)dx

≤
∫ ∞

n

k∑
a=1

P(|Xa| > x)dx

=
k∑

a=1

E(|Xa|I(|Xa| > n))

→0.

Thus, with probability 1,

n−1

n∑
i=1

|E(Xi − Yi | Fi−1)|

≤n−1

n∑
i=1

E( |Xi|I(|Xi| > i)| Fi−1)

≤n−1

n∑
i=1

k∑
a=1

E[{|Xi|I(|Xi| > i)| Fi−1, ai = a}P(ai = a|Fi−1)]

≤
k∑

a=1

1

n

n∑
i=1

E(|Xa|I(|Xa| > i)).

(49)

Because E|Xa| <∞, we know that limn→∞ E(|Xa|I(|Xa| > n)) = 0. Because the arithmetic

mean of a sequence converges to the same limit as the sequence itself, we obtain that for all
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a ∈ {1, · · · , k}

lim
n→∞

1

n

n∑
i=1

E(|Xa|I(|Xa| > i)) = 0.

In conclusion, we obtain, with probability 1, that

∣∣∣n−1

n∑
i=1

E(Xi − Yi | Fi−1)
∣∣∣ ≤ k∑

a=1

1

n

n∑
i=1

E(|Xa|I(|Xa| > i)),

and the expression on the right-hand side is a deterministic sequence converging to 0, which

implies that

n−1

n∑
i=1

E(Xi − Yi | Fi−1)
a.s.−→ 0. (50)

Combining (48) and (50), we obtain (47).

Anscombe’s theorem (Anscombe, 1952) is a classic limit theorem for randomly indexed

processes. We prove a multivariate version of Anscombe’s theorem as follows, which gen-

eralizes the univariate Anscombe’s theorem with Gaussian limit (see Mukhopadhyay and

Chattopadhyay (2012)).

Theorem 13.3 (Multivariate Anscombe’s theorem). Let {Tn}n≥1 be a sequence of column

random vectors and {Wn}n≥1 be a sequence of positive definite matrices satisfying multivari-

ate Anscombe’s condition, namely, for every ε > 0, 0 < γ < 1 there exists some δ > 0 such

that

lim sup
n→∞

P
(

max
|n′−n|≤δn

∥Tn′ − Tn∥ ≥ ελmin(Wn)

)
< γ

hold. Moreover, we assume that

sup
n≥1

λmax(Wn)

λmin(Wn)
<∞,

and there exists positive sequence ρn → ∞ such that

ρnWn
P∗→ W, (51)

where W is a real positive definite matrix.

Assume that there exists a real column vector θ ∈ Rp and as n→ ∞

W−1
n (Tn − θ)

d→ Np(0p, Ip).

Consider {Nn}n≥1, a sequence of positive integer-valued stopping times defined on the same
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probability space where {Tn}n≥1 is defined. Let {rn}n≥1 be an increasing sequence of positive

integers such that limn→∞ rn = ∞. If Nn/rn → 1 in probability as n→ ∞, then as n→ ∞

W−1
rn (TNn − θ)

d→ Np(0p, Ip).

Proof of Theorem 13.3. For any b ∈ Rp such that ∥b∥ = 1, we have

bT (Tn − θ)

∥Wnb∥
=

(Wnb)
T

∥Wnb∥
W−1

n (Tn − θ).

Let hn = Wnb
∥Wnb∥ = ρnWnb

∥ρnWnb∥ and h = Wb
∥Wb∥ . By the continuous mapping theorem, we know that

hn → h in probability.

Recall that W−1
n (Tn − θ)

d→ Np(0p, Ip). Hence, by Slutsky theorem, as n→ ∞

(Wnb)
T

∥Wnb∥
W−1

n (Tn − θ) = hTW−1
n (Tn − θ) +

(
hn − h

)T
W−1

n (Tn − θ)
d→ N(0, 1).

In conclusion, we know that
bTTn − bT θ

∥Wnb∥
d→ N(0, 1).

Note that Nn/rn → 1 in probability and

P
(

max
|n′−n|≤δn

|bTTn − bT θ| ≥ ε ∥Wnb∥
)
≤ P

(
max

|n′−n|≤δn
∥Tn − θ∥ ≥ ε · λmin(Wn)

)
,

and

lim sup
n→∞

P
(

max
|n′−n|≤δn

∥Tn − θ∥ ≥ ε · λmin(Wn)
)
≤ γ.

Applying Theorem 3.1 in Mukhopadhyay and Chattopadhyay (2012), we obtain that for any

b ̸= 0 and as n→ ∞
bTTNn − bT θ

∥Wrnb∥
d→ N(0, 1). (52)

Furthermore, by (51), we know that

ρrn ∥Wrnb∥ → ∥Wb∥ . (53)

Thus, we know that ρrnb
T (TNn − θ) = Op(1) for any b ∈ Rp, which implies

ρrn(TNn − θ) = Op(1). (54)
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Note that ∥∥W−1
rn (TNn − θ)

∥∥
≤∥TNn − θ∥
λmin(Wrn)

≤
p∑

i=1

|eT
i (TNn − θ)|
∥Wrnei∥

sup
n≥1

κ(Wn)

=Op(1),

where

κ(Wn) =
λmax(Wn)

λmin(Wn)
.

By Cramér–Wold theorem (see Billingsley (1999) p383), it is sufficient to show that for all

h ∈ Rp such that ∥h∥ = 1, we have

hTW−1
rn (TNn − θ)

d→ N(0, 1).

Set bn = W−1
rn h

∥W−1
rn h∥ , and b = W−1h

∥W−1h∥ . We have h = Wrnbn
∥Wrnbn∥

. By the continuous mapping

theorem, we know that bn → b in probability. Notice that∣∣∣∣∥Wrnbn∥
∥Wrnb∥

− 1

∣∣∣∣ ≤ κ(Wrn) ∥bn − b∥ → 0,

which implies ∥Wrnbn∥
∥Wrnb∥

→ 1 in probability. Combine this with (52), we obtain that as n→ ∞

hTW−1
rn (TNn − θ)

=
bTn (TNn − θ)

∥Wrnb∥
∥Wrnb∥
∥Wrnbn∥

=
bTn (TNn − θ)

∥Wrnb∥
(1 + op(1))

=
{bT (TNn − θ)

∥Wrnb∥
+

(bn − b)Tρrn(TNn − θ)

ρrn ∥Wrnb∥

}
(1 + op(1)).

Combining (53), (54) and bn → b in probability, we know that

(bn − b)Tρrn(TNn − θ)

ρrn ∥Wrnb∥
= op(1),
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which implies that

hTW−1
rn (TNn − θ) =

{bT (TNn − θ)

∥Wrnb∥
+ op(1)

}
(1 + op(1))

d→ N(0, 1).

Thus, we know that for any h ̸= 0, as n→ ∞

hTW−1
rn (TNn − θ)

d→ N(0, ∥h∥2).

By Cramér–Wold theorem (see Billingsley (1999) p383), we complete the proof of Theorem

13.3.

13.2 Results regarding Functions of Matrices

In this section, we provide results on derivatives of functions of matrices, and properties on

functions of a convex combination of matrices.

Lemma 13.4. Let Ia, a ∈ A be a sequence of positive semidefinite matrix. Assume π0(a) ≥
0, a ∈ A (not necessary that π0 ∈ SA) such that

∑
a′∈A π0(a

′)Ia′ is a real positive definite

matrix. Then, for all a ∈ A we have

∂(
∑

a′∈A π(a
′)Ia′)

−1

∂π(a)

∣∣∣∣
π=π0

= −
(∑

a′∈A

π0(a
′)Ia′

)−1

Ia

(∑
a′∈A

π0(a
′)Ia′

)−1

. (55)

Proof of Lemma 13.4. By definition,

∂(
∑

a′∈A π(a
′)Ia′)

−1

∂π(a)

∣∣∣∣
π=π0

= lim
ε→0

(
∑

a′∈A π0(a
′)Ia′ + εIa)

−1 − (
∑

a′∈A π0(a
′)Ia′)

−1

ε
.

Because
∑

a′∈A π0(a
′)Ia′ is a positive definite matrix, then for small enough ε, the inverse of∑

a′∈A π0(a
′)Ia′ + εIa exists. Furthermore,

(
∑
a′∈A

π0(a
′)Ia′ + εIa)

−1 − (
∑
a′∈A

π0(a
′)Ia′)

−1 = −ε(
∑
a′∈A

π0(a
′)Ia′ + εIa)

−1Ia(
∑
a′∈A

π0(a
′)Ia′)

−1,

and

lim
ε→0

(
∑
a′∈A

π0(a
′)Ia′ + εIa)

−1 = (
∑
a′∈A

π0(a
′)Ia′)

−1,

which implies (55).

Next, we will define and derive the Gateaux derivative of the criteria function Φq. For a
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real positive definite matrix Σ, recall that

Φ0(Σ) = log |Σ|, Φq(Σ) = trΣq, 0 < q < 1,

and

Φq(Σ) = (tr(Σq))1/q, q ≥ 1.

The Gateaux derivative ∇HΦq(Σ) of Φq at Σ in direction H , which is a symmetric matrix,

is defined as

∇HΦq(Σ) = lim
ε→0

Φq(Σ+ εH)− Φq(Σ)

ε
=

d

dε
Φq(Σ+ εH)

∣∣∣∣
ε=0

. (56)

If the limit specified in (56) exists for all symmetric matrices H , we says that Φq is Gateaux

differentiable at Σ.

The next lemma provides the Gateaux derivative of Φq. This lemma allows non-integer

values for q, and is thus more general than a similar result in Yang et al. (2013).

Lemma 13.5. Φq is Gateaux differentiable at any real positive definite matrix Σ for any

q ≥ 0. Moreover, we have

∇HΦq(Σ) =


tr(HΣ−1), if q = 0,

q · tr
(
Σq−1H

)
, if 0 < q < 1,

(tr Σq)1/q−1 · tr(Σq−1H), if q ≥ 1,

(57)

and

∂Φq(I−π)

∂π(a)
=


− tr(I−πIa), if q = 0,

−q · tr
(
(I−π)q+1Ia

)
, if 0 < q < 1,

−
[
tr
((

I−π
)q)]1/q−1

· tr
(
(I−π)q+1Ia

)
, if q ≥ 1,

(58)

where Iπ =
∑

a∈A π(a)Ia and I−π =
{∑

a∈A π(a)Ia

}−1
.

Remark 13.6. Based on (57), and the Riesz representation theorem over the Hilbert space

of symmetric matrix, for any positive definite Σ, there exists unique symmetric matrix

∇Φq(Σ) = { ∂
∂Σij

Φq(Σ)}1≤i,j≤n, such that for any symmetric matrix H of comparable size,

∇HΦq(Σ) = ⟨∇Φq(Σ),H⟩ .

Proof of Lemma 13.5. Let q = 0. By the definition of the Gateaux derivative, for any
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symmetric H and positive definite matrix Σ,

∇HΦ0(Σ) = lim
ε→0

Φ0(Σ+ εH)− Φ0(Σ)

ε

= lim
ε→0

1

ε
log |I + εHΣ−1| = lim

ε→0

log(1 + ελ1) + log(1 + ελ2) + · · ·+ log(1 + ελn)

ε

=(λ1 + λ2 + · · ·+ λn) = tr(HΣ−1).

where λ1, λ2, · · · , λn denote all eigenvalues of HΣ−1 counting multiplicity.

When q is a positive integer, by expanding (Σ+ εH)q, we have

tr((Σ+ εH)q)− tr(Σq) = ε · q · tr(Σq−1H) + o(ε).

Note that when q is a positive integer

Φq(Σ+ εH)− Φq(Σ)

ε

=
1

ε
(tr Σq)1/q

[(
1 +

(
tr(Σ+ εH)q − tr(Σq)

)
/tr(Σq)

)1/q
− 1

]
=

1

ε · q
(tr(Σq))1/q−1 ·

[
tr((Σ+ εH)q)− tr(Σq)

]
+ o(1)

=(tr(Σq))1/q−1 · tr(Σq−1H) + o(1).

(59)

Thus, when q is a positive integer, (57) holds.

Now, consider the case when q > 0 and q is not an integer. Because we can not expand

(Σ + εH)q and due to the lack of commutative between Σ and H , we need some more

complicated techniques. Assume Σ is of size n × n. Let λ1(ε) ≥ λ2(ε) ≥ · · · ≥ λn(ε) be all

the eigenvalues of Σ+ εH . Denote the corresponding eigenvectors by u1(ε), · · · ,un(ε).

Let λi = λi(0), and ui = ui(0) for 1 ≤ i ≤ n. Set λ0 = −∞, λn+1 = ∞.

Let λ be an eigenvalue of Σ+ εH , there exists 0 ≤ r < s ≤ n+ 1 such that

λr−1 > λ = λr = · · · = λs > λs+1.

Let d = s− r + 1, Uλ = [ur, rr+1, · · · ,us] and Uλ(ε) = [ur(ε),ur+1(ε), · · · ,us(ε)].

By Wely’s inequality, |λi(ε)− λ| ≤ |ε| ∥H∥op.

51



Notice that when |ε| is small enough, we have

tr(UT
λ (ε)(Σ+ εH)qUλ(ε))− tr(UT

λ Σ
qUλ)

=(λqr(ε)− λq) + · · ·+ (λqs(ε)− λq)

=λq
[((

1 +
λr(ε)− λ

λ

)q
− 1

)
+ · · ·+

((
1 +

λs(ε)− λ

λ

)q
− 1

)]
=qλq−1((λr(ε)− λ) + · · ·+ (λs(ε)− λ)) + o(ε),

(60)

and

((λr(ε)− λ) + · · ·+ (λs(ε)− λ))

= tr(UT
λ (ε)(Σ+ εH)Uλ(ε))− tr(UT

λ ΣUλ)

=ε · tr(UT
λ (ε)HUλ(ε)) + tr(UT

λ (ε)ΣUλ(ε))− tr(UT
λ ΣUλ).

(61)

To proceed, we first prove the following equation,

tr((Σ− λI)(Uλ(ε)−Uλ)(Uλ(ε)−Uλ)
T ) = tr(UT

λ (ε)ΣUλ(ε))− tr(UT
λ ΣUλ). (62)

(62) is justified by the following matrix calculation,

tr
(
(Σ− λI)(Uλ(ε)−Uλ)(Uλ(ε)−Uλ)

T
)
−
[
tr(UT

λ (ε)ΣUλ(ε))− tr(UT
λ ΣUλ)

]
=tr

(
(Uλ(ε)−Uλ)

T (Σ− λI)(Uλ(ε)−Uλ)
)
−
[
tr(UT

λ (ε)(Σ− λI)Uλ(ε))− tr(UT
λ (Σ− λI)Uλ)

]
=− 2 tr

(
UT

λ (ε)(Σ− λI)Uλ

)
− 2 tr

(
UT

λ (Σ− λI)Uλ

)
= 0, because (Σ− λI)Uλ = 0.

Note that Σ − λI = (I − UλU
T
λ )(Σ − λI)(I − UλU

T
λ ), −∥Σ− λI∥op I ⪯ Σ − λI ⪯

∥Σ− λI∥op I, and (Uλ(ε)−Uλ)(Uλ(ε)−Uλ)
T is positive semidefinite, we obtain

| tr
(
(Σ− λI)(Uλ(ε)−Uλ)(Uλ(ε)−Uλ)

T
)
|

≤ ∥Σ− λI∥op · tr
(
(I −UλU

T
λ )(Uλ(ε)−Uλ)(Uλ(ε)−Uλ)

T (I −UλU
T
λ )
)

= ∥Σ− λI∥op · tr
(
(I −UλU

T
λ )Uλ(ε)U

T
λ (ε)

)
= ∥Σ− λI∥op · (d−

∥∥UT
λ Uλ(ε)

∥∥2
F
)

= ∥Σ− λI∥op · (d− ∥cosΘ(Uλ,Uλ(ε))∥2F )

= ∥Σ− λI∥op · ∥sinΘ(Uλ,Uλ(ε))∥2F ,

(63)

where ∥cosΘ(Uλ,Uλ(ε))∥F =
∥∥UT

λ Uλ(ε)
∥∥
F
is due to the definition of principal angles be-

tween column spaces of Uλ and Uλ(ε) (see Yu et al. (2015)).
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By Davis-Kahan theorem (see Yu et al. (2015)), we obtain

∥ sinΘ(Uλ,Uλ(ε))∥F ≤ 2∥(Σ+ εH)−Σ∥F
min (λr−1 − λr, λs − λs+1)

= O(ε). (64)

Combining (60),(61),(62),(63) and (64), we obtain

((λr(ε)− λ) + · · ·+ (λs(ε)− λ)) = ε · tr(UT
λ (ε)HUλ(ε)) +O(ε2), and

tr(UT
λ (ε)(Σ+ εH)qUλ(ε))− tr(UT

λ Σ
qUλ) = ε · qλq−1 tr(UT

λ (ε)HUλ(ε)) + o(ε).

Let Pε = Uλ(ε)U
T
λ (ε) and P = UλU

T
λ , we know that

∥Pε − P ∥2F = tr(Pε − 2PεP + P ) = 2(d− tr(PεP )) = 2(d−
∥∥UT

λ Uλ(ε)
∥∥2
F
)

=2(d− ∥cosΘ(Uλ,Uλ(ε))∥2F ) = 2 ∥sinΘ(Uλ,Uλ(ε))∥2F ,
(65)

and ∥Pε − P ∥F =
√
2 ∥sinΘ(Uλ,Uλ(ε))∥F = O(ε). Due to ΣUλ = λUλ, we know that

Σq−1Uλ = λq−1Uλ, which means that

((λr(ε)− λ) + · · ·+ (λs(ε)− λ)) = ε · qλq−1 tr(HUλ(ε)U
T
λ (ε)) + o(ε)

=ε · qλq−1 tr(HUλU
T
λ ) + o(ε) = ε · qλq−1 tr(UT

λ HUλ) + o(ε) = ε · q · tr(Σq−1HUλU
T
λ ) + o(ε).

This leads to

tr((Σ+ εH)q)− tr(Σq) =
∑
λ

tr(UT
λ (ε)(Σ+ εH)qUλ(ε))− tr(UT

λ Σ
qUλ)

=
∑
λ

ε · q · tr(Σq−1HUλU
T
λ ) + o(ε) = ε · q · tr(Σq−1H) + o(ε),

(66)

where the last equation holds due to
∑

λUλU
T
λ = I.

Thus, when 0 < q < 1, we know that

∇HΦq(Σ) = q · tr
(
Σq−1H

)
.

Combining the first two equations in (59) with the equation (66), if q ≥ 1, we know that

∇HΦq(Σ) = (tr(Σq))1/q−1 · tr(Σq−1H).

Applying (59) again, we complete the proof of (57) in Lemma 13.5.
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By applying the chain rule and combining (55) in Lemma 13.4 with (57), we obtain that

∂Φq(I−π)

∂π(a)
=

〈
∇Φq(I−π),

∂I−π

∂π(a)

〉
=
〈
∇Φq(I−π),−I−πIaI−π

〉
= ∇−I−πIaI−πΦq(I−π),

which completes the proof of (58) in Lemma 13.5.

Lemma 13.7. Assume Ia, a ∈ SA are positive semidefinite matrices. Consider a convex

matrix function, g, such that for any pair of positive semidefinite matrices, A and B, if

A −B is a positive semidefinite matrix (denoted as A ⪰ B), then g(A) ≥ g(B). For any

π ∈ SA, define

F (π) = g

({∑
a∈A

π(a)Ia

}−1
)
. (67)

Then, F (π) is a convex function over the set {π ∈ SA;
∑

a∈A π(a)Ia is nonsingular}.
In particular, under Assumption 5, the function Fθ(π) is a convex function over the set

{π ∈ SA;
∑

a∈A π(a)Ia(θ) is nonsingular}.

Proof of Lemma 13.7. Let C0 = {π ∈ SA;
∑

a∈A π(a)Ia is nonsingular}. Assume that

π,π′ ∈ C0. Then, A =
∑

a∈A π(a)Ia and B =
∑

a∈A π
′(a)Ia are positive definite.

For any 0 < t < 1, tA+(1− t)B is positive definite. Note that for any vector v, applying

Schur complement condition (see Theorem 1.12 (b) in Zhang (2006)), we obtain that[
vTA−1v vT

v A

]
and

[
vTB−1v vT

v B

]

are positive semi-definite matrices. Notice that the following matrix is positive semi-definite

t

[
vTA−1v vT

v A

]
+(1−t)

[
vTB−1v vT

v B

]
=

[
tvTA−1v + (1− t)vTB−1v vT

v tA+ (1− t)B

]
,

by Theorem 1.12 (b) in Zhang (2006), we obtain that

tvTA−1v + (1− t)vTB−1v ≥ vT (tA+ (1− t)B)−1v.

Since v is arbitrary, we have

tA−1 + (1− t)B−1 ⪰ (tA+ (1− t)B)−1. (68)
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Now, we have

tF (π) + (1− t)F (π′) = tg
(
A−1

)
+ (1− t)g

(
B−1

)
≥g(tA−1 + (1− t)B−1) ≥ g

({
tA+ (1− t)B

}−1)
= F (tπ + (1− t)π′).

This shows that F is convex.

We proceed to the proof of the ‘In particular’ part of the lemma. Note that under

Assumption 5, there are two cases: Case 1: Gθ(Σ) = Φq(Σ) for q ≥ 0, and Case 2: Gθ(·) is a
convex function satisfying Gθ(A) ≥ Gθ(B) whenever A ⪰ B. For Case 2, we can apply our

previous analysis directly for g(·) = Gθ(·), and obtain that Fθ(π) is convex. Thus, we focus

our analysis on Case 1 in the rest of the proof. By Courant-Fischer-Wely minimax principle

(see Corollary III.1.2 in Bhatia (1997)), the i−th largest eigenvalue satisfies λi(A) ≥ λi(B)

for any 1 ≤ i ≤ n. Thus, Φq(A) ≥ Φq(B) for any q ≥ 0.

If Gθ(Σ) = Φq(Σ) =
(
tr(Σq)

)1/q
with q ≥ 1, then Φq(Σ) is the Schatten q−norm (see

equation (IV.31) in Bhatia (1997)), which implies that Gθ(Σ) is convex. More generally, if

Gθ(Σ) is convex in Σ, then by (67), we obtain that

Fθ(π) = Gθ({Iπ(θ)}−1)

is convex in π over

{π ∈ SA;
∑
a∈A

π(a)Ia(θ) is nonsingular}.

If Gθ(Σ) = Φ0(Σ) = log detΣ, we know that

Φ0({Iπ(θ)}−1) = − log det(
∑
a∈A

π(a)Ia(θ)).

We aim to show that − log det(A) is convex over positive definite matrices.

Notice that for any p× p positive definite matrix A,∫
Rp

e−1/2⟨Ax,x⟩dx =
1

(2π)p/2 det(A)1/2
.

By Hölder’s inequality, for any positive definite p× p matrices A and B, we have∫
Rp

e−1/2⟨(tA+(1−t)B)x,x⟩dx ≤
(∫

Rp

e−1/2⟨Ax,x⟩dx
)t(∫

Rp

e−1/2⟨Bx,x⟩dx
)1−t

, (69)
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which implies that

− log det(tA+ (1− t)B) ≤ −t log det(A)− (1− t) log det(B).

This shows that − log det(A) is convex over positive definite matrices.

Thus, Fθ(π) = − log det(
∑

a∈A π(a)Ia(θ)) is convex in π over

{π ∈ SA;
∑
a∈A

π(a)Ia(θ) is nonsingular}.

If Gθ(Σ) = Φq(Σ) = tr
(
Σq
)
with 0 < q < 1, we know that

Φq({Iπ(θ)}−1) = tr
(∑

a∈A

π(a)Ia(θ)
)−q

.

By Löwner-Heinz Theorem (see Theorem 2.6 in Carlen (2010)), we know that tr
(
A−q

)
is

operator convex, which means that for all positive definite matrices A and B,(
tA+ (1− t)B

)−q

⪯ tA−q + (1− t)B−q,

which implies that tr
(
A−q

)
is a convex function over positive definite matrices. In conclusion,

we obtain that Fθ(π) = Φq({Iπ(θ)}−1) is convex in π over

{π ∈ SA;
∑
a∈A

π(a)Ia(θ) is nonsingular}.

13.3 Decoupling Active Sequential Sampling

The next lemma provides a decoupling result which makes it easier to analyze the likelihood

for problems with adaptive experiment selection.

Lemma 13.8. Consider deterministic sequential selection functions hm(·),

hm(a1, Y1, a2, Y2, · · · , am−1, Ym−1) ∈ A, for m ≥ 2,

and h1 ∈ A. Consider two random vectors generated from the following procedures.

1. (Decoupled Sampling) Independently generate {Xa
m}m≥1,a∈A, where X

a
m ∼ fθ∗,a(·). Let

a1 = h1, a2 = h2(a1, X
a1
1 ), · · · , am+1 = hm+1(a1, X

a1
1 , a2, X

a2
2 , · · · , am, Xam

m ), · · · .
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2. (Iterative Sampling) Let a′1 = h1. Generate X1 ∼ fθ∗,a′1
(·). For m ≥ 1, obtain a′m+1

and Xm+1 iteratively as

a′m+1 = hm+1(a
′
1, X1, · · · , a′m, Xm),

then generate Xm+1|Fm ∼ fθ,a′m+1
, where the σ-algebra Fm =

σ(a′1, X1, a
′
2, X2, · · · , a′m, Xm).

Then, the random vectors (Xa1
1 , · · · , Xam

m , a1, · · · , am) and (X1, · · · , Xm, a
′
1, · · · , a′m) have the

same distribution for all m ≥ 1.

Proof of Lemma 13.8. We prove the lemma by induction. When m = 1, we know that

a1 = h1 = a′1, and X1|a′1 and Xa1
1 |a1 have the same distribution. Thus, (Xa1

1 , a1) and

(X1, a
′
1) have the same distribution.

By induction, assume that when m = n, random vectors (Xa1
1 , X

a2
2 , · · · , Xan

n , a1, · · · , an)
and (X1, X2, · · · , Xn, a

′
1, · · · , a′n) have the same distribution.

Let m = n + 1. Define XA
n = {Xa

i }1≤i≤n,a∈A, and an = (a1, · · · , an) ∈ An. The density

of XA
n is given by

fθ(X
A
n ) =

n∏
i=1

∏
a∈A

fθ,a(X
a
i ).

Let am = (a1, · · · , am), where a1, · · · , am are obtained from the decoupled sampling. Given

XA
n , the conditional probability mass function of an and an+1 are

fθ(a
n|XA

n ) = I(a1 = a1, · · · , an = an) and fθ(a
n+1|XA

n ) = I(a1 = a1, · · · , an+1 = an+1),

where we used the fact that the {am}1≤m≤n+1 is measurable with respect to σ(XA
n ). As a

result, the joint density functions for (XA
n ,an) and (XA

n+1,an+1) are

fθ(X
A
n ,a

n) =
n∏

i=1

∏
a∈A

fθ,a(X
a
i )I(a

1 = a1, · · · , an = an)

and

fθ(X
A
n+1,a

n+1) = fθ(X
A
n ,a

n)
∏
a∈A

fθ,a(X
a
n+1)I(a

n+1 = an+1).

Thus, given XA
n and an, the condition density for {Xa

n+1}a∈A, an+1 is

fθ({Xa
n+1}a∈A, an+1|XA

n ,a
n) =

∏
a∈A

fθ,a(X
a
n+1)I(a

n+1 = an+1).

Note that an+1 = hn+1(a1, X
a1
1 , a2, X

a2
2 , · · · , an, Xan

n ). So fθ({Xa
n+1}a∈A, an+1|XA

n ,a
n) de-
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pends on XA
n ,a

n only through a1, X
a1
1 , · · · , an, Xan

n .

Define σ-algebra F ′
n = σ(a1, X

a1
1 , · · · , an, Xan

n ). Because fθ({Xa
n+1}a∈A, an+1|XA

n ,a
n) is

measurable in F ′
n, we have

fθ({Xa
n+1}a∈A, an+1|F ′

n) = fθ({Xa
n+1}a∈A, an+1|XA

n ,an) =
∏
a∈A

fθ,a(X
a
n+1)I(a

n+1 = an+1)

(70)

We have X
an+1

n+1 |{a1, Xa1
1 , · · · , an, Xan

n } ∼ fθ,an+1(·), and an+1 = hn(a1, X
a1
1 , · · · , an, Xan

n ).

Recall that Xn+1|{a′1, X1, · · · , a′n, Xn} ∼ fθ,a′n+1
(·), a′n+1 = hn(a

′
1, X1, · · · , a′n, Xn), as

well as the induction assumption that random vectors (Xa1
1 , X

a2
2 , · · · , Xan

n , a1, · · · , an) and

(X1, X2, · · · , Xn, a
′
1, · · · , a′n) have the same distribution. Consequently, random vectors

(Xa1
1 , X

a2
2 , · · · , X

an+1

n+1 , a1, · · · , an+1) and (X1, X2, · · · , Xn+1, a
′
1, · · · , a′n+1) also have the same

distribution. We complete the proof of Lemma 13.8 by induction.

13.4 Results on Linear Spaces Indexed by a Parameter

Linear spaces spanned by the Fisher information play a crucial role in the proof of the

theorems. Note that the Fisher information matrices are depending on the parameter θ. In

this section, we present useful linear algebra results where the linear spaces are indexed by

a parameter.

Recall VQ(θ) =
∑

a∈QR(Ia(θ)), and Ia(θ) is the Fisher information matrix at the param-

eter θ with the experiment a. Throughout the section, we only used the property that Ia(θ)

is a positive semidefinite matrix and is continuous in θ, for all a ∈ A, which is guaranteed

under the regularity assumptions in Section 4.1. The results in this section still hold even

when Ia(θ) is not the Fisher information matrix, as long as it is still positive semidefinite

and continuous in θ, for all a ∈ A. We do not require any further assumptions.

Lemma 13.9. For all Q ⊂ A, and xa > 0, a ∈ Q, we have

dim(VQ(θ)) = rank
(∑

a∈Q

xaIa(θ)
)
.

Proof of Lemma 13.9. It suffices to show that VQ(θ)
⊥ = ker(

∑
a∈Q xaIa(θ)). This equation

holds because u ∈ VQ(θ)
⊥ if and only if ⟨Ia(θ)ya,u⟩ = 0 for all a ∈ Q and ya ∈ Rp, if and

only if Ia(θ)u = 0 for all a ∈ Q, if and only if uTIa(θ)u = 0 for all a ∈ Q, if and only if

uT (
∑

a∈Q xaIa(θ))u = 0, if and only if u ∈ ker(
∑

a∈Q xaIa(θ)).

Lemma 13.10. Assume Θ is a path connected and compact set. The following statements

are equivalent:
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1. for all Q ⊂ A, dim(VQ(θ)) does not depend on θ,

2. for all Q ⊂ A, rank(
∑

a∈Q Ia(θ)) does not depend on θ,

3. there exists 0 < c < c <∞, which does not depend on Q, such that

c · PVQ(θ) ⪯
∑
a∈Q

Ia(θ) ⪯ c · PVQ(θ),∀Q ⊂ A,

where PV denotes the orthogonal projection matrix onto vector space V .

Proof of Lemma 13.10.

1 ⇐⇒ 2 This equivalency holds because dim(VQ(θ)) = rank(
∑

a∈Q Ia(θ)), according to

Lemma 13.9.

3 =⇒ 2 For Q ⊂ A, let r(θ) = rank(
∑

a∈Q Ia(θ)). Also, let

r = sup
θ∈Θ

rank(
∑
a∈Q

Ia(θ)). (71)

By the definition of supremum, there exists θ0 ∈ Θ such that

r − 1/2 ≤ rank(
∑
a∈Q

Ia(θ0)) ≤ r.

Because the rank of a matrix can only take integer values, we know that rank(
∑

a∈Q Ia(θ0)) =

r. Let µ1(A) ≥ µ2(A) ≥ · · · ≥ µp(A) be the eigenvalues of a positive semidefinite

matrix A. Applying Courant–Fischer–Weyl min-max principle (see Chapter I of Hilbert

and Courant (1953) or Corollary III.1.2 in Bhatia (1997)) to c · PVQ(θ) ⪯
∑

a∈Q Ia(θ), and

r(θ) = dim(VQ(θ)) (see Lemma 13.9), we obtain

µr(θ)(
∑
a∈Q

Ia(θ)) ≥ µr(θ)(c · PVQ(θ)) = c > 0, ∀θ ∈ Θ. (72)

Applying Courant–Fischer–Weyl min-max principle to
∑

a∈Q Ia(θ) ⪯ c · PVQ(θ), and r(θ) =

dim(VQ(θ)), we obtain

µr(θ)+1(
∑
a∈Q

Ia(θ)) ≤ µr(θ)+1(c · PVQ(θ)) = 0,∀θ ∈ Θ.
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We will prove r(θ) = r for all θ ∈ Θ by contradiction. Assume, in contrast, that there

exists r1 = r(θ1) < r(θ0) = r. Then, there exists a continuous path h : [0, 1] → Θ such that

h(0) = θ0, and h(1) = θ1. Set

u(t) = µr(
∑
a∈Q

Ia(h(t))).

Note that u(0) = µr(
∑

a∈Q Ia(θ0)) ≥ c and u(1) = µr(
∑

a∈Q Ia(θ1)) = 0. Because u(t) is a

continuous function in t ∈ [0, 1], by the intermediate value theorem, there exists t′ ∈ (0, 1)

such that u(t′) = c/2.

Let θ2 = h(t′). Because µr(
∑

a∈Q Ia(θ2)) = c/2 > 0, we know that rank(
∑

a∈Q Ia(θ2)) ≥
r. By definition (71), we know that rank(

∑
a∈Q Ia(θ2)) ≤ r. Thus, r(θ2) = r. However,

µr(θ2)(
∑

a∈Q Ia(θ2)) = c/2 contradicts inequality (72). This completes the proof that r(θ) =

r for all θ ∈ Θ.

2 =⇒ 3 For Q ⊂ A, define

cmin(Q) = min
θ∈Θ

Λmin

(∑
a∈Q

Ia(θ)
)
, and cmax(Q) = max

θ∈Θ
Λmax

(∑
a∈Q

Ia(θ)
)
,

where Λmin and Λmax represent the smallest and largest non-zero eigenvalue of a positive

semidefinite matrix, respectively.

Because rank(
∑

a∈Q Ia(θ)) does not depend on θ, let r = rank(
∑

a∈Q Ia(θ)). Let

λ(s)(
∑

a∈Q Ia(θ)) denote the s−th largest eigenvalue of
∑

a∈Q Ia(θ), s = 1, 2, · · · , p. Note

that Λmin(
∑

a∈Q Ia(θ)) = λ(r)(
∑

a∈Q Ia(θ)) and Λmax(
∑

a∈Q Ia(θ)) = λ(1)(
∑

a∈Q Ia(θ)).

Now, we know that Λmin and Λmax are continuous functions provided rank(
∑

a∈Q Ia(θ))

does not depend on θ, and Ia(θ) is continuous over compact set Θ. Thus, 0 < cmin(Q) ≤
cmax(Q) <∞.

Recall that VQ(θ)
⊥ = ker(

∑
a∈Q Ia(θ)) from Lemma 13.9. Because for the positive

semidefinite matrix
∑

a∈Q Ia(θ), ker(
∑

a∈Q Ia(θ))
⊥ = R(

∑
a∈Q Ia(θ)), we obtain VQ(θ) =

R(
∑

a∈Q Ia(θ)).

Applying eigendecomposition of
∑

a∈Q Ia(θ), we have

cmin(Q) · PVQ(θ) ⪯
∑
a∈Q

Ia(θ) ⪯ cmax(Q) · PVQ(θ).

Set c = minQ⊂A cmin(Q) and c = maxQ⊂A cmax(Q). Since A is a finite set, we know that

c > 0 and c <∞.
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13.5 Other Supporting Lemmas

Lemma 13.11. Assume that positive semidefinite matrices A,B and C have the same size.

If A ⪰ C, then

tr(AB) ≥ tr(CB). (73)

Proof of Lemma 13.11. Because B1/2(A−C)B1/2 is positive semi-definite,

tr(AB)− tr(CB) = tr(B1/2(A−C)B1/2) ≥ 0. (74)

This completes the proof.

Lemma 13.12 (Multivariate Cauchy-Schwartz Inequality). For any random variable z and

random vector y, if cov(y) = Σy is positive definite matrix, then

var(z) ≥ cov(z,y) cov(y)−1 cov(y, z). (75)

Proof of Lemma 13.12. Because

0 ≤ var
(
z − cov(z,y)Σ−1

y y
)

=var(z)− 2 cov
(
cov(z,y)Σ−1

y y, z
)
+ var

(
cov(z,y)Σ−1

y y
)

=var(z)− 2 cov(z,y)Σ−1
y cov(y, z) + cov(z,y)Σ−1

y ΣyΣ
−1
y cov(y, z)

= var(z)− cov(z,y){cov(y)}−1 cov(y, z),

we complete the proof of Lemma 13.12.

Lemma 13.13. Assumptions 6A and 7A imply Assumptions 6B and 7B.

Proof of Lemma 13.13. Under Assumption 6A, we have

Ia(θ) = ZT
a Iξa,a(Zaθ)Za.

Let Z†
a be the Moore-Penrose inverse of Za. Because Za has full row rank, we know that

ZaZ
†
a = Ipa , and

Iξa,a(Zaθ) = {Z†
a}TIa(θ)Z

†
a,

which implies that Iξa,a(Zaθ) is continuous in θ. Thus, there exists 0 < c1 < c2 < ∞ such

that

c1Ipa ⪯ Iξa,a(Zaθ) ⪯ c2Ipa ,
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and for any Q ⊂ A,

VQ(θ) =
∑
a∈Q

R(Ia(θ)) =
∑
a∈Q

R(ZT
a ).

By Lemma 13.10, we know that

dim(VQ(θ)) = dim
(∑

a∈Q

R(ZT
a )
)

does not depend on θ.

By Lemma 13.10, we obtain inequality (16). This proves that Assumption 6A implies

Assumption 6B.

Next, we consider Assumption 7B. Under Assumptions 6A and 7A, we obtain

DKL(fθ∗,a∥fθ,a)

=DKL(hξ∗a,a∥hξa,a)

≥C ∥ξ∗a − ξa∥2

=C(θ − θ∗)TZT
a Za(θ − θ∗)

≥C
c2
(θ − θ∗)TZT

a Iξa,a(Zaθ
∗)Za(θ − θ∗)

=
C

c2
(θ − θ∗)TIa(θ

∗)(θ − θ∗).

Thus, for any π ∈ SA and θ ∈ Θ, we have

∑
a∈A

π(a)DKL(fθ∗,a∥fθ,a) ≥
C

c2

∑
a∈A

π(a)(θ − θ∗)TIa(θ
∗)(θ − θ∗).

Replacing the constant C
c2

by C, we obtain inequality (17) in Assumption 7B. Thus, we

obtain Assumptions 6B-7B.

14 Proof of Theoretical Results

14.1 Proof of Lemma 3.1

Proof of Lemma 3.1. The standard computational complexity for both matrix multiplication

and matrix inversion of a matrix of size p × p is O(p3). Consequently, the computational

complexity of evaluating Gθ̂ML
n

[{
I(θ̂ML

n ;an, a)
}−1
]
for each a ∈ A is O(p3). Therefore, the

computational complexity for the GI0 selection is O(kp3).
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The GI1 selection rule (3) can be reformulated as

an+1

=argmax
a∈A

tr
[
∇Gθ̂ML

n

(
{I(θ̂ML

n ;an)}−1
)
{I(θ̂ML

n ;an)}−1Ia(θ̂
ML
n ){I(θ̂ML

n ;an)}−1
]

=argmax
a∈A

tr
[
LT
a (θ̂

ML
n ){I(θ̂ML

n ;an)}−1∇Gθ̂ML
n

(
{I(θ̂ML

n ;an)}−1
)
{I(θ̂ML

n ;an)}−1La(θ̂
ML
n )
]
.

Thus, Algorithm 3 produce the same outcome as Algorithm 2.

Note that the matrix

M = {I(θ̂ML
n ;an)}−1∇Gθ̂ML

n

(
{I(θ̂ML

n ;an)}−1
)
{I(θ̂ML

n ;an)}−1

only needs to be computed once. Matrix multiplication involving matrices of sizes p× p and

p × sa is of order O(p2s), given sa ≤ s. Under the assumption that La(θ) has size p × sa,

the computational complexity of the GI1 is bounded by O(p3 + ksp2).

Furthermore, if the matrices {La(θ)} are primarily supported on an s×s submatrix, then

the computational cost of the multiplication ΣLa(θ̂
ML
n ) is at most equivalent to multiplying

matrices of sizes p × s and s × s for any matrix Σ, which has a complexity of O(s2p).

Therefore, the overall computational complexity of the GI1 selection is O(p3 + ks2p).

14.2 Proof of Proposition 6.2

We prove the following Theorem 14.1 instead, which is a generalized version of Proposition 6.2

allowing for an arbitrary sequence of θn that is not necessarily the MLE.

Theorem 14.1. Under the regularity conditions described in Section 4.1, and also assume

that the initial experiments a1, · · · , an0 ∈ A are such that I(θ;an0) is nonsingular. For any

sequence of (random or non-random) vectors θ1,θ2, · · · in Θ, if we consider the following

generalized GI0 or GI1 selection rules: for any n ≥ n0

GI0 : an+1 = argmin
a∈A

Gθn

[{
I(θn;an, a)

}−1
]
, and (76)

GI1 : an+1 = argmax
a∈A

tr
[
∇Gθn

(
Σn

)
ΣnIa(θn)Σn

]
, where we define Σn = {I(θn;an)}−1,

(77)

then there exists C > 0 such that

inf
n≥n0

nI

n
≥ C,
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and the lower bound is independent of the choice of θn. Moreover, under the same settings,

Iπn(θ) ⪰ c · C · Ip. (78)

for all θ ∈ Θ.

Proof of Proposition 6.2. Applying Theorem 14.1 with θn = θ̂ML
n , we complete the proof of

Proposition 6.2.

The proof of Theorem 14.1 is involved. We break it down to the following series of lemmas

and steps.

Step 1: Define the order statistics of experiments counts, permutations, and find

their connections with nmax and nI Let mn
a = |{i; ai = a, 1 ≤ i ≤ n}| be the number of

times that the experiment a has been selected up to time n. Without loss of generality, let

A = [k] = {1, 2, · · · , k}. Let Pk be the set of all permutations over [k].

For each mn = (mn
a)a∈A, define Pmn

k ⊂ Pk, which is described by the following state-

ments: permutation τ ∈ Pmn

k if and only if τ ∈ Pk and

mn
τ(1) ≥ mn

τ(2) ≥ · · · ≥ mn
τ(k).

The set Pmn

k is not empty, because order statistic exists.

For any permutation τ ∈ Pmn

k , define the set Qs(τ) = {τ(1), τ(2), · · · , τ(s)} for s ∈ [k].

Qs(τ) collects the indices of the top-s most frequently selected experiments. Here, τ is

introduced to handle the case where there may be ties among mn
a for a ∈ A.

Define

tn = tn(m
n) = min

τ∈Pmn
k

{s ∈ [k]; dim(VQs(τ)(θ)) = p}. (79)

Note that dim(VQk(τ)(θ)) = rank(
∑

a∈A Ia(θ)) = p for all τ ∈ Pmn

k , according to

Lemma 13.9 and Assumption 3. Also note that according to Lemma 13.10 and Assump-

tion 6B, dim(VQs(τ)(θ)) does not depend on θ. Thus, the above tn is well defined and does

not depend on θ. For the same reason, we will drop ‘θ’ and write dim(VA) for dim(VA(θ))

for A ⊂ A in the rest of the proof when the context is clear.

The next lemma specifies the permutations that we would like to focus on when there

may be ties among mn
a .

Lemma 14.2. There exists τn ∈ Pk such that

mn
τn(1) ≥ mn

τn(2) ≥ · · · ≥ mn
τn(k), (80)

64



dim(VQtn (τn)) = p, and for all τ ′ ∈ Pmn

k and all s ≤ tn − 1, dim(VQs(τ ′)) < p.

Proof of Lemma 14.2. First, according to the definition of tn in (79) and Pmn

k ̸= ∅, we know
that

S ′ = arg min
τ∈Pmn

k

{s ∈ [k]; dim(VQs(τ)(θ)) = p}

is not empty. Let τn ∈ S ′. We know that τn satisfies (80), and dim(VQtn (τn)) = p.

Assume there exist τ ′ ∈ Pmn

k and s ≤ tn − 1, such that dim(VQs(τ ′)) = p. This leads to

the following contradiction

tn = min
τ∈Pmn

k

{s ∈ [k]; dim(VQs(τ)(θ)) = p} ≤ s ≤ tn − 1.

This completes the proof of Lemma 14.2.

Recall that nmax = maxa∈A na = maxa∈Am
n
a is defined in Section 6. We obtain that

nmax = mn
τn(1)

. The following Lemma shows that nI = mn
τn(tn)

.

Lemma 14.3. Let τn be a permutation satisfying the properties described in Lemma 14.2.

Then, nI = mn
τn(tn)

, where nI is defined in (42).

Proof of Lemma 14.3. Because dim(VQtn (τn)(θ)) = p, we know that Q = Qtn(τn) is relevant,

which means that
∑

a∈Q Ia(θ) is non-singular for all θ ∈ Θ. By the definition of nI in (42),

nI ≥ min
a∈Q

mn
a = mn

τn(tn).

It suffices to prove nI ≤ mn
τn(tn)

. Assume, on the contrary, that nI > mn
τn(tn)

. In the rest

of the proof, we aim to find a contradiction.

For any S ⊂ A such that S is relevant, define Q(S) = {a ∈ A;mn
a ≥ mina∈S m

n
a}. Since

S ⊂ Q(S), Q(S) is also relevant, and

min
a∈S

mn
a = min

a∈Q(S)
mn

a .

By the definition of nI in (42), there exists a relevant S ′ ⊂ A such that mina∈S′ mn
a = nI .

Thus, nI = mina∈S′ mn
a = mina∈Q(S′)m

n
a , Q(S

′) is relevant and mina∈Q(S′)m
n
a > mn

τn(tn)
.This

implies that

min
a∈Q(S′)

mn
a ≥ mn

τn(tn−1).

Thus, Q(S ′) ⊂ Qtn−1(τn), which implies that dim(VQ(S′)) ≤ dim(Qtn−1(τn)) < p. By As-

sumption 6B and Lemma 13.10, we know that Q(S ′) is not relevant, which contradicts the

previous assumption that Q(S ′) is relevant.
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The next lemma compares the ratio between nmax = mn
τn(1)

and nI = mn
τn(tn)

with the ratio

between the maximum and minimum counts of experiments for a set of relevant experiments.

Lemma 14.4. For any Q ⊂ A such that dim(VQ) = p,

mn
τn(1)

mn
τn(tn)

≤ maxa∈Am
n
a

mina∈Qmn
a

.

Proof of Lemma 14.4. By the definition of τn, we know that

mn
τn(1) ≥ · · · ≥ mn

τn(k).

Define mn
τn(0)

= ∞ and mn
τn(k+1) = −∞.

Because (mn
τn(1)

, · · · ,mn
τn(k)

) forms the order statistic of (mn
a)a∈[k] (with possibly ties),

there exists s ∈ [k] such that Q ⊂ {τn(1), · · · , τn(s)} = Qs(τn), and

mn
τn(s) = min

a∈Q
mn

a and mn
τn(s+1) < min

a∈Q
mn

a .

Because VQ(θ) ⊂ VQs(τn)(θ), we have p = dim(VQ) ≤ dim(VQs(τn)). By the definition of tn in

(79), we obtain that tn ≤ s. This implies mn
τn(tn)

≥ mn
τn(s)

= mina∈Qm
n
a . We complete the

proof by noting that mn
τn(1)

= maxa∈Am
n
a .

Step 2: Unify the proof for generalized GI0 and GI1 To simplify the analysis, we

use the next lemma to extract a key property shared by generalized GI0 and GI1.

Lemma 14.5. Assume that
∑n0

i=1 Iai(θ) is non-singular.

For a fixed (or random) sequence θn ∈ Θ and for any n ≥ n0, we consider the following

generalized GI0 selection rule

an+1 = argmin
a∈A

Fθn(
n

n+ 1
πn +

1

n+ 1
δa) = argmin

a∈A
Gθn

({
1

n+ 1
A+

1

n+ 1
Ia(θn)

}−1
)
,

and GI1 selection rule

an+1 = argmin
a∈A

∂Fθn(πn)

∂π(a)
= argmax

a∈A

〈
∇Gθn({A/n}−1),A−1Ia(θn)A

−1
〉
, (81)

where A =
∑

a∈Am
n
aIa(θn),δa = (δa(a

′))a′∈A, and δa(a
′) = I(a = a′).

Let A2(t1, t2) =
∑

a∈A Ia(θn) + t1Ia′(θn) + t2Ia′′(θn), and Sn = Sn(t1, t2) =

66



∇Gθn({A2(t1, t2)/(n + 1)}−1). Then, both generalized GI0 and GI1 satisfy the following

property for all n ≥ n0:

If a′, a′′ ∈ A are such that

〈
Sn, {A2(t1, t2)}−1Ia′(θn){A2(t1, t2)}−1

〉
>
〈
Sn, {A2(t1, t2)}−1Ia′′(θn){A2(t1, t2)}−1

〉
,

(82)

for all t1, t2 ∈ [0, 1] , then an+1 ̸= a′′.

Remark 14.6. The generalized GI0 and GI1 defined in (76) and (77) are the same as GI0

and GI1 selections described in Lemma 14.5, respectively.

Proof of Lemma 14.5. Let a′, a′′ satisfy (82). Assume, in the contrast, that an+1 = a′′. We

will find contradictions for both GI0 and GI1 in the rest of the proof.

We start with GI0, which selects an+1 = argmina∈A Fθn(
n

n+1
πn +

1
n+1

δa). Thus, a′′ =

an+1 satisfies

Fθn(
n

n+ 1
πn +

1

n+ 1
δa′′) ≤ Fθn(

n

n+ 1
πn +

1

n+ 1
δa′). (83)

Define h(t) = Fθn(
n

n+1
πn +

1
n+1

{(1 − t)δa′ + tδa′′}). Then, (83) is equivalent to that h(1) −
h(0) ≤ 0.

Let A1(t) =
∑

a∈A Ia(θn) + (1− t)Ia′(θn) + tIa′′(θn). By Lemma 13.4, we know that

h′(t) =
〈
∇Gθn({A1(t)/(n+ 1)}−1),−{A1(t)/(n+ 1)}−1{Ia′′(θn)− Ia′(θn)}{A1(t)/(n+ 1)}−1

〉
.

Note that A1(t) = A2(1− t, t). Thus, (82) holds for all t1, t2 ∈ [0, 1] implies that it holds for

(t1, t2) = (1 − t, t), which further implies h′(t) > 0 for any t ∈ (0, 1). This contradicts with

h(1)− h(0) ≤ 0. Thus, an+1 ̸= a′′.

We proceed to the analysis of GI1. By the definition of the generalized GI1, a′′ = an+1

satisfies

〈
∇Gθn({A/n}−1),A−1Ia′(θn)A

−1
〉
≤
〈
∇Gθn({A/n}−1),A−1Ia′′(θn)A

−1
〉
,

Note that A = A2(0, 0). Thus, the above inequality contradicts with (82) with (t1, t2) =

(0, 0).

Step 3: Regularization effect of GI0 and GI1 In this step, we show that both

GI0 and GI1 regularize the experiment selection process through the property established

in Lemma 14.5. This is proved through the following Lemma 14.7, Lemma 14.8, and

Lemma 14.10.
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Lemma 14.7. Assume that
∑n0

i=1 Iai(θ) is non-singular for some n0.

Assume the condition number maxθ∈Θ,Σ⪰0 κ
(
∇Gθ

(
Σ
))

≤ K for some 0 < K <∞. Let

(a(1), a(2), · · · , a(k)) be a permutation of A such that mn
a(1)

≥ · · · ≥ mn
a(k)

and dim(Qtn−1) <

dim(Qtn) = p, where Qs = {a(1), a(2), · · · , a(s)}, and tn = tn(m
n).

If for some n ≥ n0 and 1 ≤ s ≤ tn − 1(
mn

a(s)

mn
a(s+1)

)2

>
8c3pK

c3

(
1 + 16p

c2

c2

(mn
a(s+1)

mn
a(tn)

)2)
, (84)

then

an+1 ∈ G(Qs) = {a ∈ A : dim(VQs∪{a}) > dim(VQs)}

for GI0 and GI1, where

VQ = VQ(θn) =
∑
a∈Q

R(Ia(θn)).

Proof of Lemma 14.7. Let t = tn. (84) implies that t ≥ 2. By Lemma 14.2, for any s ≤ t−1,

we have dim(VQt) = p. Because dim(VQs) < p, we know that |G(Qs)| > 0.

For any Q ⊂ A, let PVQ
be the orthogonal projection matrix on VQ(θn). We will simplify

the notation and write it as PQ for the ease of exposition when the context is clear. Then

PQs denote the orthogonal projection matrix on VQs .

According to Lemma 14.5, it is sufficient to show that, if (84) holds, then for all a′′ ̸∈
G(Qs), a

′ ∈ G(Qs) and all t1, t2 ∈ [0, 1].

〈
Sn, {A2(t1, t2)}−1Ia′(θn){A2(t1, t2)}−1

〉
>
〈
Sn, {A2(t1, t2)}−1Ia′′(θn){A2(t1, t2)}−1

〉
, (85)

where we recall that Sn = ∇Gθn({A2(t1, t2)/(n+ 1)}−1). In the rest of the proof, we abuse

the notation a little and write A = A2(t1, t2) for the ease of exposition. Then, it is sufficient

to show that for all a′′ ̸∈ G(Qs), a
′ ∈ G(Qs) and all t1, t2 ∈ [0, 1]

〈
Sn,A

−1Ia′(θn)A
−1
〉
>
〈
Sn,A

−1Ia′′(θn)A
−1
〉
. (86)

The rest proof of the consists of the following three steps:

Step A: Connect (86) with tr(PQs∪{a′}A
−2) and tr(PQsA

−2) Let

mn
a =


mn

a′ + t1 if a = a′

mn
a′ + t2 if a = a′′

mn
a otherwise

. (87)
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Then, for 0 ≤ t1, t2 ≤ 1, mn
a ≤ mn

a + 1 for all a ∈ A, and A =
∑

a∈Am
n
aIa(θn).

Note that λmax(Sn)Ip ⪰ Sn ⪰ λmin(Sn)Ip. we have〈
Sn,A

−1Ia′(θn)A
−1
〉

=tr(SnA
−1Ia′(θn)A

−1)

= tr(SnA
−1

∑
a∈Qs∪{a′}

Ia(θn)A
−1)− tr(SnA

−1
∑
a∈Qs

Ia(θn)A
−1)

≥c · λmin(Sn) tr(PQs∪{a′}A
−2)− c · λmax(Sn) tr(A

−1PQsA
−1),

(88)

where the last inequality is due to Assumption 6B and Lemma 13.11.

Notice that a′′ ̸∈ G(Qs) implies

dim(VQs∪{a′′}) = dim(VQs).

Combined with VQs ⊂ VQs∪{a′′}, we know that VQs = VQs∪{a′′}. This implies

R(Ia′′(θn)) ⊂ VQs . (89)

By Assumption 6B, we obtain

Ia′′(θn) ⪯ c · PR(Ia′′ (θn)) ⪯ c · PQs .

Hence,

〈
Sn,A

−1Ia′′(θn)A
−1
〉
= tr(SnA

−1Ia′′(θn)A
−1) ≤ c · λmax(Sn) tr(A

−1PQsA
−1). (90)

Thus, to show (86), it is sufficient to show that (84) implies

c · λmin(Sn) tr(A
−1PQs∪{a′}A

−1) > 2c · λmax(Sn) tr(A
−1PQsA

−1), (91)

which is equivalent to

tr(PQs∪{a′}A
−2)

tr(PQsA
−2)

>
2c · λmax(Sn)

c · λmin(Sn)
=

2c

c
κ(Sn). (92)

We focus on proving the above inequality in the rest of the proof.

Step B: Establish a lower bound for tr(PQs∪{a′}A
−2) Because VQs ⊂ VQs∪{a′} and

dim(VQs) < dim(VQs∪{a′}), we know that (I − PQs)PQs∪{a′} = PQs∪{a′} − PQs ̸= 0. Thus,
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there exists a unit vector u ∈ Rp such that
∥∥(I − PQ)PQs∪{a′}u

∥∥ = 1.

Applying the Rayleigh–Ritz quotient for the largest eigenvalue, we know that

tr(PQs∪{a′}A
−2) = tr(PQs∪{a′}A

−2PQs∪{a′})

≥λmax(PQs∪{a′}A
−2PQs∪{a′}) ≥ uTPQs∪{a′}A

−2PQs∪{a′}u =
∥∥A−1PQs∪{a′}u

∥∥2 . (93)

Set v = A−1PQs∪{a′}u. Then,

∥(I − PQs)A∥op ∥v∥ ≥ ∥(I − PQs)Av∥ =
∥∥(I − PQs)PQs∪{a′}u

∥∥ = 1. (94)

Notice that mn
a(s+1) ≥ mn

a(tn) ≥ 1 for any s ≤ t − 1. Thus, mn
a(s+1) + 1 ≤ 2mn

a(s+1) . Also

note that by the definition of G(Qs), as′ /∈ G(Qs) for all s′ ∈ [s]. Thus, for all a ∈ G(Qs),

ma ≤ m
(s+1)
a . The above analysis, together with Assumption 6B, implies∑

a∈G(Qs)

mn
aIa(θn) ⪯ c · (m(s+1)

a + 1) · PG(Qs)Ia(θn) ⪯ 2c ·m(s+1)
a · PG(Qs). (95)

Note that A =
∑

a∈G(Qs)
mn

aIa(θn) +
∑

a/∈G(Qs)
mn

aIa(θn). Also note that if a /∈ G(Qs), then

Ia(θn) ∈ VQs , which implies (I − PQs)Ia(θn) = 0. Thus, (95) further implies

∥(I − PQs)A∥op

=

∥∥∥∥∥∥
∑

a∈G(Qs)

mn
a(I − PQs)Ia(θn)

∥∥∥∥∥∥
op

≤∥(I − PQs)∥op

∥∥∥∥∥∥
∑

a∈G(Qs)

mn
aIa(θn)

∥∥∥∥∥∥
op

≤2c ·m(s+1)
a .

The above inequality and (94) implies ∥v∥ ≥ 1
2c·mn

a(s+1)
. This, along with (93), implies

tr(PQs∪{a′}A
−2) ≥ ∥v∥2 ≥ 1

4c2 · (mn
a(s+1))2

. (96)

Step C: Establish an upper bound for tr(PQsA
−2)

tr(A−1PQsA
−1) ≤ p · λmax(A

−1PQsA
−1). (97)

Set As =
∑

a̸∈G(Qs)
mn

aIa(θn). Let r = dim(VQs). We first show that rank(As) = r and
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R(As) = VQs . By Lemma 13.9,

rank(As) = dim(VA\G(Qs)∩{a∈A;mn
a≥1}). (98)

Because Qs ⊂ A\G(Qs) ∩ {a ∈ A;mn
a ≥ 1}, we know that

dim(VQs) ≤ dim(VA\G(Qs)∩{a∈A;mn
a≥1}) ≤ dim(VA\G(Qs)). (99)

By (89) and VQs ⊂ VA\G(Qs), we know that

VA\G(Qs) =
∑

a̸∈G(Qs)

R(Ia(θn)) ⊂ VQs ⊂ VA\G(Qs). (100)

Hence, VA\G(Qs) = VQs , and dim(VA\G(Qs)) = dim(VQs). Combined with (98) and (99), we

know that

rank(As) = dim(VQs) = dim(VA\G(Qs)∩{a∈A;mn
a≥1}) = dim(VA\G(Qs)) = r.

The above analysis and

R(As) ⊂
∑

a̸∈G(Qs)

R(Ia(θn)) = VA\G(Qs) = VQs

together imply that R(As) = VQs .

Assume the eigendecomposition Asûi = λ̂iûi, and Aui = λiui, 1 ≤ i ≤ p, where

λ̂1 ≥ · · · ≥ λ̂r > λ̂r+1 = · · · = λ̂p = 0, λ1 ≥ · · · ≥ λp with Ûs = [û1, û2, · · · , ûr], Û−s =

[ûr+1, ûr+2, · · · , ûp], Û = [Ûs, Û−s], Us = [u1,u2, · · · ,ur], U−s = [ur+1,ur+2, · · · ,up],

and U = [Us,U−s]. Based on the previous notation, we know that PQs is the orthogonal

projection on R(As), and thus, it equals ÛsÛ
T
s .

Let Θ(Ûs,Us) denote the r × r diagonal matrix whose j−th diagonal entry is the j−th

principal angle cos−1(σj), where σ1 ≥ σ2 ≥ · · · ≥ σr are the singular values of ÛT
s Us.

Applying a variant of the Davis–Kahan theorem (Theorem 2 in Yu et al. (2015)), we have∥∥∥sinΘ(Ûs,Us)
∥∥∥
F
≤ 2 ∥A−As∥F

λ̂r − λ̂r+1

=
2 ∥A−As∥F

λ̂r
. (101)

Note that

A−As =
∑

a∈G(Qs)

mn
aIa(θn) ⪯ 2cmn

a(s+1)PG(Qs), (102)
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and

∥A−As∥2F ≤ 4p · c2(mn
a(s+1))

2. (103)

Note that Qs ⊂ A\G(Qs). Because A ⪰ As ⪰
∑

a∈Qs
mn

aIa(θn) ⪰ cmn
a(s)

· PQs and

A ⪰
∑

a∈Qt
mn

aIa(θn) ⪰ cmn
a(t)
Ip, by Courant–Fischer–Weyl min-max principle (see Chapter

I of Hilbert and Courant (1953) or Corollary III.1.2 in Bhatia (1997)), we have

λr ≥ λ̂r ≥ cmn
a(s) and λp ≥ cmn

a(t) . (104)

Combining (101), (103), and (104), we obtain

∥∥∥sinΘ(Ûs,Us)
∥∥∥2
F
≤

16p · c2(mn
a(s+1))

2

c2(mn
a(s)

)2
. (105)

By definition, we obtain∥∥∥sinΘ(Ûs,Us)
∥∥∥2
F
= r − (cos2(σ1) + cos2(σ2) + · · ·+ cos2(σr)) = r −

∥∥∥ÛT
s Us

∥∥∥2
F
,

and

r =
∥∥∥ÛT

s [Us,U−s]
∥∥∥2
F
=
∥∥∥ÛT

s Us

∥∥∥2
F
+
∥∥∥ÛT

s U−s

∥∥∥2
F
.

Thus, ∥∥∥sinΘ(Ûs,Us)
∥∥∥2
F
=
∥∥∥ÛT

s U−s

∥∥∥2
F
. (106)

Combining (105) and (106), we have

λmax(A
−1PQsA

−1)

=λmax(Û
T
s A

−2Ûs)

=λmax(Û
T
s [Us,U−s]diag(λ

−2
1 , λ−2

2 , · · · , λ−2
p )[Us,U−s]

T Ûs)

=λmax(Û
T
s Usdiag(λ

−2
1 , · · · , λ−2

r )UT
s Ûs + ÛT

s U−sdiag(λ
−2
r+1, · · · , λ−2

p )UT
−sÛs)

≤λmax(Û
T
s Usdiag(λ

−2
1 , · · · , λ−2

r )UT
s Ûs) + λmax(Û

T
s U−sdiag(λ

−2
r+1, · · · , λ−2

p )UT
−sÛs)

≤λ−2
r

∥∥∥ÛT
s Us

∥∥∥2
op
+ λ−2

p

∥∥∥UT
−sÛs

∥∥∥2
op

≤λ−2
r + λ−2

p

∥∥∥sinΘ(Ûs,Us)
∥∥∥2
F

≤ 1

(cmn
a(s)

)2

(
1 +

16p(cmn
a(s+1))

2

(cmn
a(t)

)2

)
.

(107)
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The above display and (97) implies

tr(A−1PQsA
−1) ≤ p

1

(cmn
a(s)

)2

(
1 +

16p(cmn
a(s+1))

2

(cmn
a(t)

)2

)
. (108)

Combining (96), (97) and (108), we have

tr(PQs∪{a′}A
−2)

tr(A−1PQsA
−1)

≥
{4c2p
c2

(
1 +

16p(cmn
a(s+1))

2

(cmn
a(t)

)2

)}−1
(
mn

a(s)

mn
a(s+1)

)2

(109)

Thus, (84) implies (92).

Lemma 14.8. Assume that
∑n0

i=1 Iai(θ) is nonsingular for some n0.

Consider the pre-specified criteria function Gθ(Σ) = Φq(Σ). Let (a(1), a(2), · · · , a(k)) be

a permutation of A such that mn
a(1)

≥ · · · ≥ mn
a(k)

and dim(Qtn−1) < dim(Qtn) = p, where

Qs = {a(1), a(2), · · · , a(s)}, and tn = tn(m
n).

For a fixed (or random) sequence θn ∈ Θ and for any n ≥ n0, we consider the generalized

GI0 selection rule

an+1 = argmin
a∈A

Φq

({
1

n+ 1
A+

1

n+ 1
Ia(θn)

}−1
)
,

and GI1 selection rule

an+1 = argmax
a∈A

tr
(
A−(q+1)Ia(θn)

)
, (110)

where A =
∑

a∈Am
n
aIa(θn).The generalized GI1 selection based on (110) coincides with the

selection (81).

If for some 1 ≤ s ≤ tn − 1(
mn

a(s)

mn
a(s+1)

)q+1 (
1− 16pc2

c2
(mn

a(s+1)

mn
a(s)

)2)
>
(2c
c

)q+2

p

(
1 +

16pc2

c2

(mn
a(s+1)

mn
a(tn)

)q+1(mn
a(s+1)

mn
a(s)

)1−q
)
,

(111)

then

an+1 ∈ G(Qs) = {a ∈ A : dim(VQs∪{a}) > dim(VQs)}

for generalized GI0 and GI1, where

VQ =
∑
a∈Q

R(Ia(θn)).

Proof of Lemma 14.8 . To prove the lemma, we follow similar steps as those in the proof of
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Lemma 14.7. We will omit the repetitive details and only state the main differences.

By assumption Gθ(Σ) = Φq(Σ), Lemma 13.4 and 13.5, we know that for any a, a′ ∈ A
and positive definte matrix A ∈ Rp×p,〈

∇Φq({A/n}−1),A−1Ia(θn)A
−1
〉
>
〈
∇Φq({A/n}−1),A−1Ia′(θn)A

−1
〉

if and only if tr(A−(q+1)Ia(θn)) > tr(A−(q+1)Ia′(θn)).
(112)

Thus, the generalized GI1 selection based on (110) coincides with the selection (81).

Similar to the arguments for (86), to prove the lemma, it is sufficient to show that (111)

implies that for all a′′ ̸∈ G(Qs), a
′ ∈ G(Qs) and all t1, t2 ∈ [0, 1],

〈
Sn,A

−1Ia′(θn)A
−1
〉
>
〈
Sn,A

−1Ia′′(θn)A
−1
〉
, (113)

where A is redefined as A2(t1, t2) and Sn = ∇Gθn({A2(t1, t2)/(n + 1)}−1) = ∇Φq({A/(n +

1)}−1). Applying (112), we know that (113) is equivalent to

tr
(
A−(q+1)Ia′(θn)

)
> tr

(
A−(q+1)Ia′′(θn)

)
. (114)

It is sufficient to show that (111) implies (114) for all a′′ ̸∈ G(Qs), a
′ ∈ G(Qs) and all

t1, t2 ∈ [0, 1]. Similar to the proof of Lemma 14.7, this is proved using the following 3 Steps.

Step A: Connect (114) with tr(A−(q+1)PQs∪{a′}) and tr(A−(q+1)PQs) Similar to the

derivation leading to (88), we have

tr(A−(q+1)Ia′(θn)) ≥ c · tr(A−(q+1)PQs∪{a′})− c · tr(A−(q+1)PQs).

Similar to (90), we have

tr(A−(q+1)Ia′′(θn)) ≤ c · tr(A−(q+1)PQs). (115)

Thus, to prove (114), it is sufficient to show (111) implies that

c · tr(A−(q+1)PQs∪{a′}) > 2c · tr(A−(q+1)PQs), (116)

which is equivalent to
tr(A−(q+1)PQs∪{a′})

tr(A−(q+1)PQs)
>

2c

c
. (117)
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Step B: Establish a lower bound for tr(A−(q+1)PQs∪{a′}) Similar to the proof of

Lemma 14.7, we define As =
∑

a∈G(Qs)
mn

aIa(θn), then r = dim(VQs) = rank(As)

and R(As) = VQs . Assume the eigendecomposition Asûi = λ̂iûi, and Aui = λiui,

1 ≤ i ≤ p, where λ̂1 ≥ · · · ≥ λ̂r > λ̂r+1 = · · · = λ̂p = 0, λ1 ≥ · · · ≥ λp with

Ûs = [û1, û2, · · · , ûr], Û−s = [ûr+1, ûr+2, · · · , ûp], Û = [Ûs, Û−s], Us = [u1,u2, · · · ,ur],

U−s = [ur+1,ur+2, · · · ,up], and U = [Us,U−s].

Because a′ /∈ VQs , there exists a unit vector u ∈ Rp such that PQsu = 0, and PQs∪{a′}u =

u. Then,

λmax(A
−(q+1)PQs∪{a′}) = λmax(PQs∪{a′}A

−(q+1)PQs∪{a′}) ≥ uTA−(q+1)u.

Assume u =
∑p

i=1 biui =
∑p

i=1 b̂iûi. Because PQs =
∑r

i=1 û
T
i ûi and

0 = PQsu =

p∑
i=1

b̂iPQsûi =
r∑

i=1

b̂iûi,

we obtain that b̂1 = b̂2 = · · · = b̂r = 0. Thus, we can rewrite u as Û−sβ̂1 with
∥∥∥β̂1

∥∥∥ = 1.

Note that

uTA−(q+1)u =

p∑
i=1

λ
−(q+1)
i b2i ≥ λ

−(q+1)
r+1

p∑
i=r+1

b2i = λ
−(q+1)
r+1

∥∥UT
−su

∥∥2 .
Because β̂1 ∈ Rp−r and

∥∥∥β̂1

∥∥∥ = 1, we know that there exist unit vectors β̂2, β̂3, · · · , β̂p−r

such that β̂ = [β̂1, β̂2, · · · , β̂p−r] is an orthogonal matrix. Thus, we know that

∥∥UT
−su

∥∥2 = ∥∥∥UT
−sÛ−sβ̂1

∥∥∥2 = ∥∥∥UT
−sÛ−sβ̂

∥∥∥2 − p−r∑
i=2

∥∥∥UT
−sÛ−sβ̂i

∥∥∥2
≥
∥∥∥UT

−sÛ−s

∥∥∥2
F
− (p− r − 1) = 1−

∥∥∥sinΘ(Û−s,U−s)
∥∥∥2
F
,

where the last equation holds because of the definition of sinΘ(Û−s,U−s).

Combining the above inequalities, we obtain that

λmax(A
−(q+1)PQs∪{a′}) ≥ λ

−(q+1)
r+1 ·

(
1−

∥∥∥sinΘ(Û−s,U−s)
∥∥∥2
F

)
. (118)

By Weyl’s inequality and (102), we know that

λr+1 = |λr+1 − λ̂r+1| ≤ ∥A−As∥op ≤ 2cmn
a(s+1) .
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Similar to how we show (105), we also have that

∥∥∥sinΘ(Û−s,U−s)
∥∥∥2
F
≤

16p · c2(mn
a(s+1))

2

c2(mn
a(s)

)2
. (119)

Thus, we obtain

tr(A−(q+1)PQs∪{a′}) ≥ λmax(A
−(q+1)PQs∪{a′}) ≥ (2cmn

a(s+1))
−q−1

{
1−

16p · c2(mn
a(s+1))

2

c2(mn
a(s)

)2

}
.

(120)

Step C: Establish an upper bound for tr(A−(q+1)PQs) Similar to (107) and according

to (105), we have

λmax(A
−(q+1)PQs)

=λmax(Û
T
s A

−(q+1)Ûs)

=λmax(Û
T
s [Us,U−s]diag(λ

−(q+1)
1 , λ

−(q+1)
2 , · · · , λ−(q+1)

p )[Us,U−s]
T Ûs)

=λmax(Û
T
s Usdiag(λ

−(q+1)
1 , · · · , λ−(q+1)

r )UT
s Ûs + ÛT

s U−sdiag(λ
−(q+1)
r+1 , · · · , λ−(q+1)

p )UT
−sÛs)

≤λmax(Û
T
s Usdiag(λ

−(q+1)
1 , · · · , λ−(q+1)

r )UT
s Ûs) + λmax(Û

T
s U−sdiag(λ

−(q+1)
r+1 , · · · , λ−(q+1)

p )UT
−sÛs)

≤λ−(q+1)
r

∥∥∥ÛT
s Us

∥∥∥2
op
+ λ−(q+1)

p

∥∥∥UT
−sÛs

∥∥∥2
op

≤λ−(q+1)
r + λ−(q+1)

p

∥∥∥sinΘ(Ûs,Us)
∥∥∥2
F

≤ 1

(cmn
a(s)

)q+1

(
1 +

16p(c)2(mn
a(s+1))

2

(c)2(mn
a(tn))q+1(mn

a(s)
)1−q

)
,

where we used λp ≥ cmn
a(t)

in the last inequality. Thus,

tr(A−(q+1)PQs) ≤ pλmax(A
−(q+1)PQs) ≤

p

(cmn
a(s)

)q+1

(
1 +

16p(c)2(mn
a(s+1))

2

(c)2(mn
a(tn))q+1(mn

a(s)
)1−q

)
.

(121)

Combining (120) and (121), we obtain

tr(A−(q+1)PQs∪{a′})

tr(A−(q+1)PQs)
≥
( c
2c

)q+1 (mn
a(s)

)q+1

p(mn
a(s+1))q+1

(
1−

16p·c2(mn

a(s+1)
)2

c2(mn

a(s)
)2

)
(
1 +

16p(c)2(mn

a(s+1)
)2

(c)2(mn

a(tn)
)q+1(mn

a(s)
)1−q

) . (122)
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Hence, if(
mn

a(s)

mn
a(s+1)

)q+1 (
1− 16pc2

c2
(mn

a(s+1)

mn
a(s)

)2)
>
(2c
c

)q+2

p

(
1 +

16pc2

c2

(mn
a(s+1)

mn
a(tn)

)q+1(mn
a(s+1)

mn
a(s)

)1−q
)
,

then (117) holds.

The next lemma is useful for controlling a sequence based on some iterative inequality.

Lemma 14.9. Given M0 > 0, A′ > 0, B′, C ′ ≥ 0, and q ≥ 0, there exists M1,M2, · · · such

that

xq+1 ≤ A′xq−1 +B′(1 + C ′M q+1
j xq−1),

then x ≤Mj+1/Mj. Here, each Mj depends only on M0, · · · ,Mj−1, q, and A
′, B′, C ′.

Proof of Lemma 14.9. Let

Mj+1 :=Mj · sup{x;xq+1 ≤ A′xq−1 +B′(1 + C ′M q+1
j xq−1)}. (123)

By induction, assume Mj <∞. Due to

lim
x→∞

1

xq+1

(
A′xq−1 +B′(1 + C ′M q+1

j xq−1)
)
= 0,

we know that the set {x;xq+1 ≤ A′xq−1 +B′(1 + C ′M q+1
j xq−1)} is bounded from above.

Thus, Mj+1 defined by (123) is bounded from above. By induction, we complete the

proof.

Lemma 14.10. Assume that
∑n0

i=1 Iai(θ) is nonsingular.

Let (a
(1)
n , a

(2)
n , · · · , a(k)n ) be a permutation of A such that mn

a
(1)
n

≥ · · · ≥ mn

a
(k)
n

and

dim(Qtn−1) < dim(Qtn) = p, where Qs,n = {a(1)n , a
(2)
n , · · · , a(s)n }, and tn = tn(m

n). To

simplify the notation, let (a(1), a(2), · · · , a(k)) = (a
(1)
n , a

(2)
n , · · · , a(k)n ) and Qs = Qs,n.

Also assume that the experiment selection rule satisfy the following property:

There exists constants A′ ≥ 0, B′ > 0, C ′ > 0 such that for all n ≥ n0, if for some

1 ≤ s ≤ tn − 1,(
mn

a(s)

mn
a(s+1)

)q+1 (
1− A′(mn

a(s+1)

mn
a(s)

)2)
> B′

(
1 + C ′

(mn
a(s+1)

mn
a(tn)

)q+1(mn
a(s+1)

mn
a(s)

)1−q
)
,

then an+1 ∈ G(Qs).
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Then, this experiment selection rule also satisfies that supn≥n0

mn

a(1)

mn

a(tn)
<∞ and infn≥n0

nI

nmax
≥

C > 0, where C depending only on A′, B′, C ′, k and
m

n0

a(1)

m
n0

a
(tn0 )

.

Proof of Lemma 14.10. Recall the definition of tn = tn(m
n), there exists a permutation

τn ∈ P over A such that

mn
τn(1) ≥ mn

τn(2) ≥ · · · ≥ mn
τn(k),

a(1) = τn(1), · · · , a(k) = τn(k),

and dim(VQtn−1) < dim(VQtn
) = p. Define

Ind(n) =
mn

a(1)

mn
a(tn)

.

To show supn≥n0

mn

a(1)

mn

a(tn)
<∞, it is sufficient to show that if n ≥ n0,

sup
n≥n0

Ind(n) <∞.

Let M0 =
m

n0

a(1)

m
n0

a
(tn0 )

. According to the definition of a(1) and a(tn0 ), we know that M0 ≥ 1. Next,

we use induction to prove that for all n ≥ n0

Ind(n) ≤ 2 max
0≤i≤k−1

Mi, (124)

where the sequence {Mi}k−1
i=1 is defined in Lemma 14.9.

For the base case, when n = n0, we know that
∑n0

i=1 Iai(θ) is nonsingular, and thus

mn0

a(tn0 ) ≥ 1. This implies,

Ind(n0) ≤M0 ≤ mn0

a(1)
<∞.

For the induction step n > n0, assume that Ind(n) ≤ 2max0≤i≤k−1Mi. We discuss two

cases

Case 1: if an+1 ∈ argmaxam
n
a , then we will show that Ind(n) ≤ max0≤i≤k−1Mi and Ind(n +

1) ≤ 2max0≤i≤k−1Mi,

Case 2: if an+1 ̸∈ argmaxam
n
a , then we will show that Ind(n+ 1) ≤ Ind(n).

Below are the detailed analysis for these two cases.

Case 1: an+1 ∈ argmaxam
n
a Without loss of generality, we assume that τn(1) = a(1) =

an+1. If tn = 1, then Ind(n) = 1 ≤ max0≤i≤k−1Mi. Now, we focus on the case where tn ≥ 2.
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Note that τn(1) has been selected as an+1, and τn(1) /∈ G(Q1). According to the lemma’s

assumption, we know that for all 1 ≤ s ≤ tn − 1,(
mn

a(s)

mn
a(s+1)

)q+1 (
1− A′(mn

a(s+1)

mn
a(s)

)2) ≤ B′
(
1 + C ′

(mn
a(s+1)

mn
a(tn)

)q+1(mn
a(s+1)

mn
a(s)

)1−q
)
. (125)

Next, we use this inequality iteratively for s = tn − 1, tn − 2, · · · , 1 to show that Ind(n) ≤
max0≤i≤k−1Mi. We start with setting s = tn − 1 in (125), we obtain that

xq+1 ≤ A′xq−1 +B′(1 + C ′M q+1
0 xq−1),

where x =
mn

a(tn−1)

mn

a(tn)
. According to Lemma 14.9, this implies x =

mn

a(tn−1)

mn

a(tn)
≤M1.

Set s = tn − 2 in (125), and combine it with
mn

a(tn−1)

mn

a(tn)
≤M1, we have

xq+1 ≤ A′xq−1 +B′(1 + C ′M q+1
1 xq−1),

where x =
mn

a(tn−2)

mn

a(tn−1)
. Apply Lemma 14.9 again, we obtain that

mn

a(tn−2)

mn

a(tn−1)
≤ M2/M1, which

further implies
mn

a(tn−2)

mn

a(tn)
≤M2. By similar arguments, set s = tn − 3, tn − 4, · · · , 1, we obtain

that
mn

a(1)

mn
a(tn)

≤Mtn−1 ≤ max
0≤i≤k−1

Mi.

That is, Ind(n) ≤ max0≤i≤k−1Mi.

Note that in this case mn+1
τn(1)

= mn
τn(1)

+ 1, and mn+1
τn(s)

= mn
τn(s)

, for any s ≥ 2. Set

Q = {τn(1), τn(2), · · · , τn(tn)}. We know that dim(VQ) = p. Hence,

maxam
n+1
a

mina∈Qmn+1
a

=
mn+1

τn(1)

mn+1
τn(tn)

=
mn

τn(1)
+ 1

mn
τn(tn)

≤ 2
mn

τn(1)

mn
τn(tn)

≤ 2 max
0≤i≤k−1

Mi.

By Lemma 14.4, we know that

Ind(n+ 1) =
mn+1

τn+1(1)

mn+1
τn+1(tn+1)

≤ maxam
n+1
a

mina∈Qmn+1
a

≤ 2 max
0≤i≤k−1

Mi.

Case 2: an+1 ̸∈ argmaxam
n
a In this case, maxam

n+1
a = mn

τn(1)
and mn+1

τn(tn)
≥ mn

τn(tn)
=

mina∈Qm
n
a , where we let Q = {τn(1), τn(2), · · · , τn(tn)}.

Applying Lemma 14.4, we have

Ind(n+ 1) ≤ maxam
n+1
a

mina∈Qmn+1
a

≤
mn

τn(1)

mn
τn(tn)

= Ind(n) ≤ 2 max
0≤i≤k−1

Mi,
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where the last inequality in the above display is due to the induction assumption.

Combine the results from both cases. By induction, we have

mn
a(1)

mn
a(tn)

≤ 2 max
0≤i≤k−1

Mi,

for all n ≥ n0. Combined with Lemma 14.3, we know that

nI

n
=
mn

a(tn)

n
≥

mn
a(tn)

k ·mn
a(1)

≥ 1

2k ·max0≤i≤k−1Mi

> 0,

where k ·max0≤i≤k−1Mk−1 only depend on A′, B′, C ′, k and
m

n0

a(1)

m
n0

a
(tn0 )

.

Proof of Theorem 14.1. Combining Lemmas 14.7, 14.8 and 14.10, we compete the proof of

inf
n≥n0

nI

n
≥ C > 0.

By Assumption 6B, we know that

Iπn(θ) ⪰
∑

a;mn
a≥nI

mn
a

n
Ia(θ) ⪰

nI

n

∑
a;mn

a≥nI

Ia(θ) ⪰ c · C · Ip. (126)

for all θ ∈ Θ.

14.3 Proof of Theorem 4.1

To show Theorem 4.1, we prove the following more general Theorem 14.11 instead, which

applies to general experiment selection rules that are not necessarily GI0 and GI1.

Theorem 14.11. Let U ∈ (0, 1). Assume the experiment selection rule satisfies that

πn(an) ∈ KU for large enough n, where

KU =

{
π ∈ SA : max

S⊂A:S is relevant
min
a∈S

π(a) ≥ U

}
. (127)

Here, we say that a set of experiments S is relevant if
∑

a∈A Ia(θ) is nonsingular for any

θ ∈ Θ. Given Assumptions 1-4 along with either Assumptions 6A-7A or 6B-7B, the θ̂ML
n

converges to θ∗ almost surely.

Proof of Theorem 4.1. According to Proposition 6.2, there exists U > 0 such that (127)

holds for n large enough, following GI0 or GI1. Theorem 4.1 then follows by applying
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Theorem 14.11.

Proof of Theorem 14.11. Let θ̂n = θ̂ML
n for the ease of exposition. According to (5), we know

that ln(θ̂n;an) ≥ ln(θ
∗;an). According to (13) in Assumption 4, with probability 1, for any

η > 0, there exists N such that for n > N , πn ∈ KU

|ln(θ∗;an)−M(θ∗;πn)| ≤
η

3
and |ln(θ̂n;an)−M(θ̂n;πn)| ≤

η

3
.

It follows that

ln(θ̂n;an) ≥M(θ∗;πn)−
η

3
.

Also, we have

M(θ∗;πn)−M(θ̂n;πn) ≤ ln(θ̂n;an)−M(θ̂n;πn) +
η

3
≤ 2η

3
.

That is, for η > 0,

P

{
∞⋃

m=1

∞⋂
n=m

{M(θ̂n;πn)−M(θ∗;πn) ≥ −2

3
η}

}
= 1.

It follows that

P

{
∞⋂

m=1

∞⋃
n=m

{M(θ̂n;πn)−M(θ∗;πn) ≤ −η}

}
= 0.

Notice that

M(θ∗;π)−M(θ;π) =
∑
a∈A

π(a)DKL(fθ∗,a∥fθ,a)

By Assumption 7B, we can show that for any π ∈ KU , and any ε > 0, there exists a finite

positive number η = η(U, ε), such that

sup
θ:∥θ−θ∗∥≥ε

M(θ;π) ≤M (θ∗,π)− η.

This means that for large enough n,{
||θ̂n − θ∗|| ≥ ε

}
⊂
{
M(θ̂n;πn) ≤M(θ∗;πn)− η

}
.
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It follows that for any ε > 0,

P

(
∞⋂

m=1

∞⋃
n=m

{∥∥∥θ̂n − θ∗
∥∥∥ ≥ ε

})
= 0.

Thus,

P
(
lim
n→∞

θ̂n = θ∗
)
= P

(
∞⋂
l=1

∞⋃
m=1

∞⋂
n=m

{∥∥∥θ̂n − θ∗
∥∥∥ < 1

l

})

= lim
l→∞

P

(
∞⋃

m=1

∞⋂
n=m

{∥∥∥θ̂n − θ∗
∥∥∥ < 1

l

})
= 1.

14.4 Proof of Theorem 4.2

The proof of Theorem 4.2 follows the similar strategy as the proof of the classic asymptotic

normality result for MLE with i.i.d. observations, which involves the asymptotic analysis of

the Taylor expansion of the score equation. However, the proof for Theorem 4.2 requires the

analysis of dependent stochastic processes and is more delicate.

In the following series of lemmas, we first justify the use of the score equation in

Lemma 14.12. Then, we provide (almost surely) asymptotic bounds for the Hessian of

the log-likelihood and the score statistic in Lemma 14.13. Lemma 14.14 provides a Taylor

expansion for the score function around the true parameter and the MLE, and gives an upper

bound for the remaining terms. Finally, these lemmas are combined together to obtain the

proof of Theorem 4.2.

Lemma 14.12. Under the setting of Theorem 14.11, if θ∗ ∈ int(Θ), we have

P

(
∞⋃

m=1

∞⋂
n=m

{∇θln(θ̂n;an) = 0}

)
= 1.

Proof of Lemma 14.12. Let B(θ∗, δ) denote the open ball with the center θ∗ and radius δ > 0

such that B(θ∗, δ) ⊂ int(Θ).

Because ln(θ;an) is differentiable in θ, we know that{∥∥∥θ̂n − θ∗
∥∥∥ < δ

}
⊂
{
∇θln(θ̂n;an) = 0

}
.
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Thus,

1 ≥ P

(
∞⋃

m=1

∞⋂
n=m

{∇θln(θ̂n;an) = 0}

)
≥ P

(
∞⋃

m=1

∞⋂
n=m

{∥∥∥θ̂n − θ∗
∥∥∥ < δ

})
= 1,

where the last equation is due to the almost sure convergence of θ̂n obtained from Theo-

rem 14.11.

Lemma 14.13. Under Assumptions 1-4, if πn ∈ KU for large enough n, i.e.,

P

(
∞⋃

m=1

∞⋂
n=m

{πn ∈ KU}

)
= 1,

Also assume that the estimator θ̂n → θ∗ a.s. P∗. Then, with probability 1,

lim sup
n→∞

1

n− 1

n−1∑
j=1

Ψ
aj
2 (Xj) ≤

k∑
a=1

EX∼fθ∗,aΨ
a
2(X) =: µY <∞,

lim
n→∞

∥∥−∇2
θln−1(θ

∗;an−1)− Iπn−1(θ∗)
∥∥
op

= 0,

∥∥−∇2
θln−1(θ;an−1) +∇2

θln−1(θ
∗;an−1)

∥∥
op

≤ 1

n− 1

n−1∑
i=1

Ψai
2 (Xi) ∥θ − θ∗∥ ,

lim sup
n→∞

∥∥∥(−∇2
θln−1(θ̂n−2;an−1))

−1
∥∥∥
op

≤ 1

minπ∈KU
λmin(Iπ(θ∗))

<∞,

lim sup
n→∞

∥∥∥(−∇2
θln−2(θ̂n−2;an−2))

−1
∥∥∥
op

≤ 1

minπ∈KU
λmin(Iπ(θ∗))

<∞,

lim sup
n→∞

∥∥(−∇2
θln(θ

∗;an))
−1
∥∥
op

≤ 1

minπ∈KU
λmin(Iπ(θ∗))

<∞.

Proof of Lemma 14.13. Let the information filtration be

Fn = σ({a1, X1, · · · , an, Xn}).

In the rest of the proof, we restrict the analysis to the event
⋃∞

m=1

⋂∞
n=m{πn ∈ KU},

which has probability 1 by the assumption. Applying Lemma 13.2 on each entry of

−∇2
θ log fθ∗,ai(Xi), and note that E(∇2

θ log fθ∗,ai(Xi)|Fi−1) = −Iai(θ
∗), we obtain

−∇2
θln−1(θ

∗;an−1)− Iπn−1(θ∗) =
1

n− 1

n−1∑
i=1

(
−∇2

θ log fθ∗,ai(Xi)− Iai(θ
∗)
) a.s.−→ 0. (128)
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By Assumption 2 and the relaxed condition (15), we know that

∥∥−∇2
θln−1(θ;an−1) +∇2

θln−1(θ
∗;an−1)

∥∥
op

≤ 1

n− 1

n−1∑
i=1

Ψai
2 (Xi)ψ(∥θ − θ∗∥).

Let {Xa
j }1≤j≤n,a∈A be a sequence of independent random variables such thatXa

j ∼ fθ∗,a for all

j ≥ 1 and a ∈ A. By Lemma 13.8, we can replace (X1, X2, · · · , Xn) with (Xa1
1 , X

a2
2 , · · · , Xan

n )

without changing the joint distribution for all n.

Let Yi =
∑

a∈AΨa
2(X

a
i ). We know that {Yi}∞i=1 are i.i.d. and by Assumption 2, µY :=

Eθ∗Y1 <∞.

The strong law of large numbers (see Theorem 2.1 in Ross (2014)) implies that with

probability 1,
1

n

n∑
j=1

Yj → µY .

Thus, with probability 1

lim sup
n→∞

1

n− 1

n−1∑
j=1

Ψ
aj
2 (X

aj
j ) ≤ lim sup

n→∞

1

n− 1

n−1∑
j=1

∑
a∈A

Ψa
2(X

a
j ) =

k∑
a=1

EX∼fθ∗,aΨ
a
2(X) = µY <∞.

Set An = Iπn−1(θ∗), and ∆An = −∇2ln−1(θ̂n−2;an−1)− An for all n ≥ 1. Notice that

A−1
n − (An +∆An)

−1∆AnA
−1
n = (An +∆An)

−1(An +∆An −∆An)A
−1
n = (An +∆An)

−1,

∥∥(An +∆An)
−1 − A−1

n

∥∥
op

=
∥∥−(An +∆An)

−1∆AnA
−1
n

∥∥
op

≤
∥∥(An +∆An)

−1
∥∥
op
∥∆An∥op

∥∥A−1
n

∥∥
op
,

as well as ∥∥A−1
n

∥∥
op

≤ 1

minπ∈KU
λmin(Iπ(θ∗))

<∞,

for any n. Furthermore,

∥∥(An +∆An)
−1
∥∥
op

≤
∥∥A−1

n

∥∥
op
+
∥∥(An +∆An)

−1
∥∥
op

∥∥A−1
n

∥∥
op
∥∆An∥op ,

which implies ∥∥(An +∆An)
−1
∥∥
op

≤
∥A−1

n ∥op
1− ∥A−1

n ∥op ∥∆An∥op
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given that ∥A−1
n ∥op ∥∆An∥op < 1. Note that

∥∆An∥op ≤
1

n− 1

n−1∑
j=1

Ψ
aj
2 (Xj)

∥∥∥θ̂n−2 − θ∗
∥∥∥+ ∥∥−∇2ln−1(θ

∗)− Iπn−1(θ∗)
∥∥
op
.

The first term on the right-hand side of the above inequality converges to 0 a.s., because

of the almost sure convergence assumption on θ̂n, and the second term converges to 0 a.s.

because of (128). Consequently, ∥∆An∥op
a.s.−→ 0. This further implies that, for n large

enough, ∥∆An∥op ≤
1
2
minπ∈KU

λmin(Iπ(θ∗)). For such n, we have

∥∥(An +∆An)
−1 − A−1

n

∥∥
op

≤
∥∆An∥op ∥A−1

n ∥2op
1− ∥∆An∥op ∥A−1

n ∥op
a.s.−→ 0.

Note that An +∆An = −∇2ln−1(θ̂n−2;an−1). Thus, with probability 1,

lim sup
n→∞

∥∥∥(−∇2
θln−1(θ̂n−2;an−1))

−1
∥∥∥
op

≤ lim sup
n→∞

∥∥A−1
n

∥∥
op

≤ 1

minπ∈KU
λmin(Iπ(θ∗))

<∞.

Similarly, we can also show that with probability 1,

lim sup
n→∞

∥∥∥(−∇2
θln−2(θ̂n−2;an−2))

−1
∥∥∥
op

≤ 1

minπ∈KU
λmin(Iπ(θ∗))

<∞,

as well as

lim sup
n→∞

∥∥(−∇2
θln(θ

∗;an))
−1
∥∥
op

≤ 1

minπ∈KU
λmin(Iπ(θ∗))

<∞.

Lemma 14.14. Under Assumptions 1-4, the Taylor expansion for the score function

∇θln(θ;an) is given by

∇θln(θ
∗ +Wn/

√
n;an) = ∇θln(θ

∗;an) +∇2
θln(θ

∗;an)Wn/
√
n+R(θ∗,Wn),

∇θln(θ̂n′ ;an) = ∇θln(θ̂n;an) +∇2
θln(θ̂n;an)(θ̂n′ − θ̂n) +R′(θ̂n′ , θ̂n),

(129)

where θ̂n and θ̂n′ are the MLE based on ln(θ;an) and ln′(θ;an′), respectively, Wn =
√
n(θ̂n−

θ∗),

∥R(θ∗,Wn)∥ ≤ 1

n

n∑
j=1

Ψ
aj
2 (Xj)

∥∥∥θ̂n − θ∗
∥∥∥ψ(∥∥∥θ̂n − θ∗

∥∥∥), and

∥∥∥R′(θ̂n′ , θ̂n)
∥∥∥ ≤ 1

n

n∑
j=1

Ψ
aj
2 (Xj)

∥∥∥θ̂n′ − θ̂n

∥∥∥ψ(∥∥∥θ̂n′ − θ̂n

∥∥∥).
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Proof of Lemma 14.14. Set g(t) =
〈
b,∇θln(θ

∗ + t(θ̂n − θ∗);an)
〉
. By the Lagrange mean

value theorem, there exists 0 < t∗ < 1 such that

g(1)− g(0) = g′(t∗),

i.e., 〈
b,∇θln(θ̂n;an)−∇θln(θ

∗;an)
〉
=
〈
b,∇2

θln(θ
∗ + t∗(θ̂n − θ∗);an)(θ̂n − θ∗))

〉
.

Then,

⟨b, R(θ∗,Wn)⟩ =
〈
b,
{
∇2

θln(θ
∗ + t∗(θ̂n − θ∗);an)−∇2

θln(θ
∗;an)

}
(θ̂n − θ∗)

〉
. (130)

Under Assumption 2, we have

∥R(θ∗,Wn)∥ = sup
∥b∥≤1

⟨b, R(θ∗,Wn)⟩

≤ max
0≤t∗≤1

∥∥∥∇2
θln(θ

∗ + t∗(θ̂n − θ∗);an)−∇2
θln(θ

∗;an)
∥∥∥
op

∥∥∥θ̂n − θ∗
∥∥∥

≤ 1

n

n∑
j=1

Ψ
aj
2 (Xj)

∥∥∥θ̂n − θ∗
∥∥∥ψ(∥∥∥θ̂n − θ∗

∥∥∥).
Similarly, we can show that〈

b, R′(θ̂n′ , θ̂n)
〉
=
〈
b,
{
∇2

θln(θ̂n + t∗(θ̂n′ − θ̂n);an)−∇2
θln(θ̂n;an)

}
(θ̂n′ − θ̂n)

〉
.

Under Assumption 2, we have∥∥∥R′(θ̂n′ , θ̂n)
∥∥∥

= sup
∥b∥≤1

〈
b, R′(θ̂n′ , θ̂n)

〉
≤ max

0≤t∗≤1

∥∥∥∇2
θln(θ̂n + t∗(θ̂n′ − θ̂n);an)−∇2

θln(θ̂n;an)
∥∥∥
op

∥∥∥θ̂n′ − θ̂n

∥∥∥
≤ 1

n

n∑
j=1

Ψ
aj
2 (Xj)

∥∥∥θ̂n′ − θ̂n

∥∥∥ψ(∥∥∥θ̂n′ − θ̂n

∥∥∥).

Proof of Theorem 4.2. Write θ̂n = θ̂ML
n for the ease of exposition. By Theorem 4.1, we know

that θ̂n converges to θ∗ almost surely. By Lemma 14.12, with probability 1, there exists
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random integer N <∞ such that for any n ≥ N , ∇θln(θ̂n;an) = 0. Let Wn =
√
n(θ̂n−θ∗).

Recall the remainder function defined in Lemma 14.14,

R(θ∗,Wn) := ∇θln(θ
∗ +Wn/

√
n;an)−∇θln(θ

∗;an)−∇2
θln(θ

∗;an)Wn/
√
n.

With ∇θln(θ
∗ +Wn/

√
n;an) = 0 provided n ≥ N in mind, we can write Wn

Wn = −
{
∇2

θln(θ
∗;an)

}−1 {√
n∇θln(θ

∗;an) +
√
nR(θ∗,Wn)

}
. (131)

The rest of the proof consists of three parts: in Part I, we show that
√
n∇θln(θ

∗;an)
d→

N(0,
∑

a∈A π(a)Ia(θ
∗)); in Part II, we show that ∇2

θln(θ
∗;an)

P∗→ −
∑

a∈A π(a)Ia(θ
∗); and

in Part III, we show that
√
nR(θ∗,Wn) = op(1).

Part I: Show that
√
n∇θln(θ

∗;an)
d→ N(0,

∑
a∈A π(a)Ia(θ

∗)) as n → ∞ Let b be any

constant vector in Rp with ∥b∥ = 1. For i = 1, . . . , n, let

ξn,i :=
1√
n
bT∇θ log fθ∗,ai(Xi).

Set Fi = σ{a1, X1, a2, X2, · · · , ai, Xi} for any i ≥ 1 and F0 denote the trivial σ−algebra.

Applying the Dominated Convergence Theorem, coupled with the classical proof of differ-

entiation under the integral sign, we arrive at the conclusion that E(ξn,i|Fi−1) = 0, which

implies that E(ξn,i) = 0. Denote σ2
n,i := E(ξ2n,i|Fi−1) =

1
n
bTIai(θ

∗)b.

Let Sn :=
∑n

i=1 ξn,i. Note that E(Sn) = 0 and E(S2
n) < ∞, since E(ξ2n,i) < ∞ for all i.

Then, {Sn,Fn}n≥1 is a martingale array with mean 0 and finite variance. We will apply the

martingale central limit theorem to Sn. We check the conditions first.

We first check the conditional variance condition. We write

n∑
i=1

σ2
n,i = bT

{
1

n

n∑
i=1

Iai(θ
∗)

}
b = bT

{∑
a∈A

πn(a)Ia(θ
∗)

}
b.

Due to the convergence assumption of πn, we have

bT

{∑
a∈A

πn(a)Ia(θ
∗)

}
b

P∗→ bT

{∑
a∈A

π(a)Ia(θ
∗)

}
b.

Then the conditional variance condition holds.

We then check the conditional Lindeberg’s condition. Assume random variables {Xa}a∈A
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have densities {fθ∗,a}a∈A, respectively. For any ε > 0, with probability 1,

n∑
i=1

E
{
ξ2n,iI(|ξn,i| > ε)|Fi−1

}
≤

k∑
a=1

E
{
∥∇θ log fθ∗,a(X

a)∥2 I(∥∇θ log fθ∗,a(X
a)∥ >

√
nε)
}
.

By Assumption 2,

lim
n→∞

E
{
∥∇θ log fθ∗,a(X

a)∥2 I(∥∇θ log fθ∗,a(X
a)∥ >

√
nε)
}
= 0.

Thus, the conditional Lindeberg condition holds.

By the Martingale Central Limit Theorem (Corollary 3.1 in Hall and Heyde (1980)), we

have
n∑

i=1

ξn,i
d→ N

(
0, bT

{∑
a∈A

π(a)Ia(θ
∗)

}
b

)
.

It follows by Cramér–Wold theorem (see Billingsley (1999) p383) that

√
n∇θln(θ

∗;an)
d→ N

(
0,
∑
a∈A

π(a)Ia(θ
∗)

)
. (132)

Part II: Show that ∇2
θln(θ

∗;an)
P∗→ −

∑
a∈A π(a)Ia(θ

∗) For each i = 1, . . . , n, by As-

sumption A3, we have

E
{
∇2

θ log fθ∗,ai(Xi)|Fi−1

}
= −Iai(θ

∗).

Also, the conditional expectation has

1

n

n∑
i=1

Iai(θ
∗) = Iπn(θ∗)

P∗→
∑
a∈A

π(a)Ia(θ
∗),

due to the convergence assumption of πn.

For each i, l = 1, . . . , p, define

Gi,l =
∑

a∈A,Xa∼fθ∗,a(·)

∣∣∣(∇2
θ log fθ∗,a(X

a)
)
i,l

∣∣∣ .
Then, for all x ≥ 0 and i, l ≥ 1,

P
{∣∣∣(∇2

θ log fθ∗,a(X
a)
)
i,l

∣∣∣ > x
}
≤ P{Gi,l > x}
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This implies that
∑

a∈A E(
∣∣∣(∇2

θ log fθ∗,a(X
a))i,l

∣∣∣) ≤∑i,l E(Gi,l) <∞ under Assumption 2.

By Lemma 13.2 and the Slutsky’s theorem, we arrive at

1

n

n∑
i=1

∇2
θ log fθ∗,ai(Xi) = ∇2

θln(θ
∗;an)

P∗→ −
∑
a∈A

π(a)Ia(θ
∗). (133)

Part III: Show that
√
nR(θ∗,Wn) = op(1) According to Lemma 14.13 and Lemma 14.14,

we know that

∥∥√nR(θ∗,Wn)
∥∥ ≤ 1

n

n∑
j=1

Ψ
aj
2 (Xj) ∥Wn∥ψ

(∥∥∥θ̂n − θ∗
∥∥∥). (134)

By (131), we have

∥Wn∥ ≤
∥∥∥{∇2

θln(θ
∗;an)

}−1
∥∥∥
op

{∥∥√n∇θln(θ
∗;an)

∥∥+ ∥∥√nR(θ∗,Wn)
∥∥} . (135)

The above two inequalities together implies

∥∥√nR(θ∗,Wn)
∥∥ ≤

1
n

∑n
j=1Ψ

aj
2 (Xj)ψ

(∥∥∥θ̂n − θ∗
∥∥∥)∥∥∥{∇2

θln(θ
∗)}−1

∥∥∥
op
∥
√
n∇θln(θ

∗)∥

1− 1
n

∑n
j=1Ψ

aj
2 (Xj)

∥∥∥{∇2
θln(θ

∗)}−1
∥∥∥
op
ψ
(∥∥∥θ̂n − θ∗

∥∥∥) (136)

given that 1
n

∑n
j=1Ψ

aj
2 (Xj)

∥∥∥{∇2
θln(θ

∗)}−1
∥∥∥
op
ψ
(∥∥∥θ̂n − θ∗

∥∥∥) < 1. We have shown in (133)

in Part II that

∇2
θln(θ

∗;an) = −
∑
a∈A

π(a)Ia(θ
∗) + op(1),

and thus ∥∥∥{∇2
θln(θ

∗;an)
}−1
∥∥∥
op

= λ−1
min

(∑
a∈A

π(a)Ia(θ
∗)

)
+ op(1). (137)

Furthermore, under Assumption 5, by the consistency result in Theorem 4.1 and Lemma

14.13, we have ∥∥∥θ̂n − θ∗
∥∥∥ = op(1),

which implies that

1

n

n∑
j=1

Ψ
aj
2 (Xj)

∥∥∥{∇2
θln(θ

∗)
}−1
∥∥∥
op
ψ
(∥∥∥θ̂n − θ∗

∥∥∥) = op(1). (138)
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Let the event Dn :=
{
1− 1

n

∑n
j=1Ψ

aj
2 (Xj)

∥∥∥{∇2
θln(θ

∗)}−1
∥∥∥
op
ψ
(∥∥∥θ̂n − θ∗

∥∥∥) > 1
2

}
. We have

P(Dn) → 1, as n→ ∞.

On the event Dn, according to (132) , we have

∥∥√n∇θln(θ
∗)
∥∥ = Op(1),

which together with (136), (138) and Lemma 14.13 yields ∥Wn∥ = Op(1). It follows from

(134) that ∥∥√nR(θ∗,Wn)
∥∥ = op(1).

Therefore, applying Slutsky’s Theorem and the continuous mapping Theorem to (131), we

have

Wn
d→ N

0,

(∑
a∈A

π(a)Ia(θ
∗)

)−1
 ,

which concludes the proof.

14.5 Proof of Theorem 4.3

We first present an extension of the classic convergence theorem by Robbins and Siegmund

(1971), which is frequently employed to prove convergence of stochastic processes within the

fields of stochastic approximation and reinforcement learning. It provides conditions on a

stochastic process {Zn} for it to converge almost surely. The following modified version of

the Robbins-Siegmund Theorem allows us to obtain a better estimate of the convergence

rate of {Zn}. Later in this section, we will apply this result to Zn = Fθ∗(πn)− Fθ∗(π∗) for

proving Theorem 4.3.

Lemma 14.15 (Modified Robbins-Siegmund Theorem). Let an, cn be integrable random

variables and Zn be a non-negative integrable random variable adaptive to filtration Fn for

all n ≥ 1, and F1 ⊂ F2 · · · . Assume that

E [Zn+1 | Fn] ≤ (1− an)Zn + cn, for all n ≥ 1. (139)

Set a−n = max{0,−an} and a+n = max{0, an}. Assume

∞∑
n=1

a−n <∞.
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Then, the following statements hold.

1. If
∞∑
n=1

cn exists with probability 1, (140)

then there exists non-negative random variable Z∞ such that limn→∞ Zn = Z∞ with

probability 1.

2. If we assume (140) holds and further require

{a+nZn}∞n=1 are all intergrable, and
∞∑
n=1

an = +∞ with probability 1, (141)

then limn→∞ Zn = 0 with probability 1.

3. Assume (141) holds. If there exists 0 < β < c such that an ≥ c
n
and the limit

∑∞
n=1 n

βcn

exists with probability 1, then limn→∞ nβZn = 0 with probability 1.

Proof of Lemma 14.15.

Part 1 First of all, (139) implies

E [Zn+1 | Fn] ≤
(
1 + a−n

)
Zn + cn.

Set Z ′
n = Zn∏n−1

i=1 (1+a−i )
, and c′n = cn∏n

i=1(1+a−i )
. Notice that

∑∞
n=1 a

−
n <∞ implies

∏∞
n=1(1+a

−
n ) <

∞. By Abel’s test for series (see Exercise 9.15 in Ghorpade and Limaye (2006)), we know

that

P
( ∞∑

n=1

c′n exsits
)
= 1, (142)

Because |c′n| ≤ |cn|, 0 ≤ Z ′
n ≤ Zn as well as cn and Zn are integrable, we know that c′n and

Z ′
n are also integrable. Note that

E
[
Z ′

n+1 | Fn

]
≤ Z ′

n + c′n. (143)

Let Y1 = Z ′
1 and Yn = Z ′

n − (c′1 + · · · + c′n−1), which are integrable for all n ≥ 2. We know

that Yn is integrable for all n ≥ 1. By (143), we obtain

E [Yn+1 | Fn] ≤ Yn. (144)
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Let τT = inf{n;
∑n

k=1 c
′
k > T}, for any T ≥ 0. Note that {τT > n} = {

∑n
i=1 c

′
n ≤ T} ∈ Fn.

Because

Yn∧τT =
n∑

l=1

Yl · I(τT = l) + Yn · I(τT > n), and |Yn∧τT | ≤
n∑

i=1

|Yi|,

we obtain that Yn∧τT is integrable for all n ≥ 1.

By the definition of τT , we know that i ≤ τT − 1 =⇒
∑i

k=1 c
′
k ≤ T , which implies that

for any n ≥ 1

Yn∧τT ≥ −
n∧τT−1∑
k=1

c′k ≥ −T.

By (144), we know that for any n ≥ 1,

E[Y(n+1)∧τT |Fn] = YτT I(τT ≤ n) + E[Yn+1|Fn]I(τT > n)

≤
n∑

l=1

YτT I(τT = l) + YnI(τT > n) = Yn∧τT , and

0 ≤ E[Yn∧τT + T ] ≤ · · · ≤ E[Y1∧τT + T ] = EZ ′
1 + T <∞.

This concludes that Yn∧τT +T is a non-negative supermartingale (see Section 1.1 in Hall and

Heyde (1980)). Applying Doob’s convergence theorem (see Theorem 2.5 in Hall and Heyde

(1980)) to L1 uniformly bounded submartingale −(Yn∧τT + T ) , we know that limn→∞ Yn∧τT
exists and is finite for any T ≥ 0.

In conclusion, limn→∞ Yn exists and is finite almost surely on event

{τT = ∞} =
{ n∑

i=1

c′i ≤ T for any n ≥ 1
}
for any T ≥ 0.

Combining this with (142), we know that limn→∞ Yn exists and is finite almost surely. Hence,

with probability 1, we have

Z∞ = lim
n→∞

Zn =
∞∏
n=1

(1 + a−n )
(

lim
n→∞

Yn −
∞∑
k=1

c′k

)
.

Part 2 Because a+n = max{0, an}, we have a′n = a+n
1+a−n

≥ 0. Similar to the arguments in

Part 1, we have

E
[
Z ′

n+1 | Fn

]
≤ (1− a′n)Z

′
n + c′n.
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Because we assume that
∑∞

n=1 an = +∞ with probability 1, we have

N∑
n=1

a′n ≥ 1

1 + supn a
−
n

N∑
n=1

(an − a−n ) → +∞,

as N → ∞ with probability 1. Let Y ′
1 = Z ′

1 and for any n ≥ 2

Y ′
n = Z ′

n +
n−1∑
k=1

a′kZ
′
k −

n−1∑
k=1

c′k.

Since |a′n| ≤ |an|, |a′nZ ′
n| ≤ a+nZn, |an| and a+nZn are intergrable, we know that Y ′

n is inter-

grable for any n ≥ 1. Similar to the arguments in Part 1, we obtain that Y ′
n∧τT is intergrable

for any T ≥ 0,

E[Y ′
n+1|Fn] ≤ Y ′

n and

Y ′
n∧τT ≥ −

n∧τT−1∑
k=0

c′k ≥ −T, and

E[Y ′
(n+1)∧τT |Fn] = Y ′

τT
I(τT ≤ n) + E[Y ′

n+1|Fn]I(τT > n)

≤
n∑

l=1

Y ′
τT
I(τT = l) + Y ′

nI(τT > n) = Y ′
n∧τT .

In conclusion, we obtain that Y ′
n∧τT is a super-martingale, such that

0 ≤ E[Y ′
n∧τT + T ] ≤ · · · ≤ E[Y ′

1∧τT + T ] = EZ ′
1 + T <∞.

This concludes that {Y ′
n∧τT +T}

∞
n=1 is a L

1 uniformly bounded supermartingale (see Section

1.1 in Hall and Heyde (1980)). Applying Doob’s convergence theorem (see Theorem 2.5 in

Hall and Heyde (1980)) to L1 uniformly bounded submartingale −(Y ′
n∧τT +T ), we know that

limn→∞ Y ′
n∧τT exists and is finite for any T ≥ 0. Similar to the arguments in Part 1, we know

that with probability 1, limn→∞ Y ′
n exists and is finite.

Notice that with probability 1,

0 ≤
n−1∑
k=1

a′kZ
′
k = Y ′

n − Z ′
n +

n−1∑
k=1

c′k ≤ Y ′
n +

n−1∑
k=1

c′k <∞.

Combined with (142), we obtain that
∑∞

k=1 a
′
kZ

′
k exists with probability 1.
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Because with probability 1,

∞∑
n=1

a′n = +∞,

∞∑
k=1

a′kZ
′
k <∞, and lim

n→∞
Z ′

n exists,

we obtain that with probability 1

lim
n→∞

Z ′
n = 0.

Part 3 We define g(t) = (1 − ct)(1 + t)β, t ≥ 0. Notice that limt→0+
g(t)−g(0)

t
= g′(0) =

−(c − β) < 0. Thus, there exists N > 0 such that g( 1
n
) ≤ 1 − c−β

2n
, for all n ≥ N . Define

Cn = (n+ 1)βcn and An = 1− A′
n, where

A′
n =

 g( 1
n
), n < N

1− c−β
2n
, n ≥ N.

Note that

(n+ 1)β

nβ
(1− an) ≤ (1 +

1

n
)β(1− c

n
) = g

( 1
n

)
≤ A′

n = 1− An, n ≥ 1.

This implies that

E
[
(n+ 1)βZn+1 | Fn

]
≤ (1− An)n

βZn + Cn.

Because the limit
∑∞

n=1 n
βcn exists and {(n+1

n
)β}∞n=1 is a monotone and bounded sequence

with probability 1, by Abel’s test for series (see Exercise 9.15 in Ghorpade and Limaye

(2006)), the limit
∑∞

n=1Cn exists with probability 1.

It is straightforward to check that

∞∑
n=1

An = ∞, and
∞∑
n=1

A−
n <∞.

Applying the second conclusion in Lemma 14.15, we obtain that with probability 1

lim
n→∞

nβZn = 0.
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In the rest of the section, let Zn = Fθ∗(πn) − Fθ∗(π∗). Applying Assumption 5 and

Lemma 13.7, we know that Fθ(π) is convex in π. Notice

E [Zn | Fn−1] = Fθ∗

(
n− 1

n
πn−1 +

1

n
δan

)
− Fθ∗ (π∗) ,

and

Zn−1 = Fθ∗ (πn−1)− Fθ∗ (π∗) .

Lemma 14.16. KU defined in (127) satisfies that

• π,π′ ∈ KU , t ∈ (0, 1) =⇒ tπ + (1− t)π′ ∈ KU/2, and

• π ∈ KU =⇒ λmax

(
{Iπ(θ)}−1

)
≤ 1

c·U .

Moreover, there exists U0 > 0 such that⋃
θ̂∈Θ

arg min
π∈SA

Fθ̂(π) ⊂ KU0 . (145)

and for both generalized GI0 and GI1 defined in (76) and (77), and for all n ≥ n0, we have

πn ∈ KU0 ,∀n ≥ n0,

where n0 satisfies that
∑n0

i=1 Iai(θ̂0) is non-singular for some θ̂0 ∈ Θ.

Proof of Lemma 14.16. For any π,π′ ∈ KU , and t ∈ (0, 1/2],

max
S⊂A:S is relevant

min
a∈S

tπ(a) + (1− t)π′(a) ≥ 1

2
max

S⊂A:S is relevant
min
a∈S

π′(a) ≥ U

2
.

When t ∈ [1/2, 1), we can obtain the same lower bound, which means that tπ + (1− t)π′ ∈
KU/2 for any t ∈ (0, 1). For any π ∈ SA, define

πI := max
S⊂A:S is relevant

min
a∈S

π(a). (146)

By Assumption 6B,

cπI · Ip ⪯
∑
a∈A

π(a)Ia(θ) ⪯
∑

a:π(a)>0

Ia(θ) ⪯ c · PV{a;π(a)>0}(θ). (147)

Notice that for any θ,

πI > 0 =⇒ Iπ(θ) ≻ 0 =⇒ dim
(
V{a;π(a)>0}(θ)

)
= p =⇒ πI ≥ min

a;π(a)>0
π(a) > 0.
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Thus, we know that πI > 0, if and only if Iπ(θ∗) is nonsingular, if and only if Iπ(θ) is

nonsingular for any θ ∈ Θ.

Let Q = {a ∈ A; π(a) > πI}. We will show by contradiction that if Q is not empty,

then dim(VQ) < p. If dim(VQ) = p, then by Assumption 6B, we know that PVQ(θ) = Ip. By

(16), we know that Iπ(θ∗) is nonsingluar, which means that Q ⊂ A is relevant. However,

mina∈Q π(a) > πI , which contradicts the definition of πI in (146).

Thus, dim(VQ) < p and PVQ(θ) ̸= Ip. By Assumption 6B, we obtain

cπI · Ip ⪯
∑
a∈A

π(a)Ia(θ) ⪯
∑
a∈Q

π(a)Ia(θ) +
∑
a̸∈Q

πIIa(θ) ⪯ c · PVQ(θ) + cπI · Ip. (148)

Applying Courant–Fischer–Weyl min-max principle (see Chapter I of Hilbert and Courant

(1953) or Corollary III.1.2 in Bhatia (1997)) for Rayleigh quotient on (148), we obtain that

λmin(Iπ(θ)) ∈ [cπI , cπI ]. (149)

Applying Theorem 14.1, π ∈ KU implies λmin(Iπ(θ)) ≥ cU , which further implies

λmax

(
{Iπ(θ)}−1

)
≤ 1

c·U .

Also, we have

λmax

(
{Iπ(θ∗)}−1

)
→ ∞ ⇐⇒ λmax

(
{Iπ(θ)}−1

)
→ ∞,∀θ ∈ Θ ⇐⇒ πI → 0. (150)

We will show (145) by contradiction. Set Un = 1
n
. Assume, in contrast to (145), that there

exists θ̂n ∈ Θ and πn ∈ SA, such that

Fθ̂n(π
n) = min

π∈SA
Fθ̂n(π), and πn

I ≤ Un =
1

n
.

Then,

lim sup
n→∞

Fθ̂n(π
n) = lim sup

n→∞
min
π∈SA

Fθ̂n(π) ≤ max
θ∈Θ

min
π∈SA

Fθ(π) <∞ (151)

Set An = Iπn
(θ). We know that ∥An∥op ≤ c and by (149) λmin(An) ≤ cπn

I ≤ c/n. Let

Gθ(A
−1
n ) = Φq(A

−1
n ). When q = 0, we know that

lim
n→∞

min
θ∈Θ

Φ0(A
−1
n ) ≥ lim

n→∞
log(n/c) + (p− 1) log(1/c) = ∞. (152)

When q > 0, we know that

lim
n→∞

min
θ∈Θ

Φq(A
−1
n ) ≥ lim

n→∞
min
θ∈Θ

λmax(A
−1
n ) ≥ lim

n→∞
n/c = ∞. (153)
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Combining (152) and (153) with Assumption 5 and (150), we know that

lim
πn
I →0

min
θ∈Θ

Fθ(π
n) = lim

πn
I →0

min
θ∈Θ

Gθ({Iπn

(θ)}−1) = ∞. (154)

By equivalence result (150) and limit result (154), since πn
I → 0 as n→ ∞, we obtain

lim inf
n→∞

Fθ̂n(π
n) ≥ lim inf

πn
I →0

min
θ∈Θ

Fθ(π
n) → ∞,

which contradicts (151). Thus, (145) holds.

By Theorem 14.1, we know that there exists U0 > 0 such that

πn ∈ KU0 , n ≥ n0.

Combined with (149), we completes the proof.

Lemma 14.17. Under Assumptions 1-5, there exists LU <∞ such that

∥∇∇θFθ(π)∥op ≤ LU , and
∥∥∇2Fθ(π)

∥∥
op

≤ LU ,

for any θ ∈ Θ and π ∈ KU .

Proof of Lemma 14.17. Define uθ(A) = Gθ(A
−1).

For any positive definite matrix A, each element of A−1 is a well-defined composition of

elementary functions of A. Therefore, each element of A−1 is infinitely differentiable.

By Assumptions 5 and Lemma 13.5, ∇θGθ(Σ) and ∇2Gθ(Σ) are continuous in (θ,Σ)

for any θ ∈ Θ and positive definite matrix Σ. Set A = Iπ(θ). We have Fθ(π) = uθ(Iπ(θ)).

By the chain rule, we know that

∂

∂θi
Fθ(π) =

〈
∂

∂A
uθ(A)

∣∣∣∣
A=Iπ(θ)

,
∂Iπ(θ)

∂θi

〉
+

∂

∂θi
Gθ(A

−1)

∣∣∣∣
A=Iπ(θ)

. (155)

Notice that each element of ∂
∂A
uθ(A)

∣∣
A=Iπ(θ)

is continuously differentiable in A. Thus

∂

∂π(a)

∂

∂A
uθ(Iπ(θ)) (156)

exists and is continuous in (π,θ) ∈ KU ×Θ.

Furthermore, we know that

∂

∂π(a)

∂Iπ(θ)

∂θi
=
∂Ia(θ)

∂θi
, and (157)
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∂

∂π(a)

( ∂

∂θi
Gθ(A

−1)

∣∣∣∣
A=Iπ(θ)

)
=

〈
∂

∂θi

∂

∂A
Gθ(A

−1)

∣∣∣∣
A=Iπ(θ)

, Ia(θ)

〉
. (158)

Combining (155), (156), (157) and (158), we obtain that ∥∇∇θFθ(π)∥ is continuous over

Θ ×KU for any U > 0. By Lemma 14.16 and the definition of KU in (127), we know that

KU is a close subset of SA. Thus, Θ×KU is compact.

By chain rule, we know that

∂

∂π(a)
Fθ(π) =

〈
∂

∂A
uθ(A)

∣∣∣∣
A=Iπ(θ)

,
∂Iπ(θ)

∂π(a)

〉
=

〈
∂

∂A
uθ(Iπ(θ)), Ia(θ)

〉
. (159)

Because uθ(Iπ(θ)) is twice continously differentiable in A, we know that ∇2Fθ(π) is con-

tinuous over compact set Θ×KU for any U .

In conclusion, there exists LU <∞ such that

∥∇∇θFθ(π)∥op ≤ LU , and
∥∥∇2Fθ(π)

∥∥
op

≤ LU ,

for any θ ∈ Θ and π ∈ KU .

Lemma 14.18. Under Assumptions 1-5 as well as 6A-7A (or 6B-7B), the generalized GI0

and (76) and GI1, defined in (77), satisfy that there exists a constant L > 0 such that,

Fθn−1(πn)− Fθn−1(π
∗
n) ≤ (1− 1

n
)(Fθn−1(πn−1)− Fθn−1(π

∗
n)) +

L

n2
, n ≥ n0. (160)

Proof of Lemma 14.18. By Theorem 14.1 and Lemma 14.16, there exists 0 < U < ∞ such

that πn,π
∗
n ∈ KU , where we define

π∗
n ∈ arg min

π∈SA
Fθn−1(π).

By Lemma 13.7, Fθn−1(π) is convex in π. According to Jensen’s inequality,

Fθn−1(
n− 1

n
πn−1 +

1

n
π∗

n) ≤
n− 1

n
Fθn−1(πn−1) +

1

n
Fθn−1(π

∗
n). (161)

Thus,

Fθn−1(
n− 1

n
πn−1 +

1

n
π∗

n)− Fθn−1(π
∗
n) ≤ (1− 1

n
)(Fθn−1(πn−1)− Fθn−1(π

∗
n)). (162)
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Notice that

Fθn−1(
n− 1

n
πn−1 +

1

n
π∗

n)− Fθn−1(πn−1) =

〈
∇Fθn−1(πn−1),

1

n
π∗

n −
1

n
πn−1

〉
+R(πn−1,π

∗
n),

(163)

where

R(πn−1,π
∗
n) =

〈
∇Fθn−1(π

′)−∇Fθn−1(πn−1),
1

n
π∗

n −
1

n
πn−1

〉
,

for some π′ between πn−1 and n−1
n
πn−1 +

1
n
π∗

n. By Lemma 14.16, we know that π′ ∈ KU/2.

By Assumptions 1-5 and Lemma 14.17, there exists a constant C ′ <∞ such that

|R(πn−1,π
∗
n)|

≤∥ 1
n
π∗

n −
1

n
πn−1∥2 sup

π∈KU/2,θ∈Θ

∥∥∇2Fθ(π)
∥∥
op

≤C
′

n2
sup

π∈KU/2,θ∈Θ

∥∥∇2Fθ(π)
∥∥
op

=
L

n2
,

(164)

where

L = C ′ sup
π∈KU/2,θ∈Θ

∥∥∇2Fθ(π)
∥∥
op
<∞.

By Lemma 13.4, we know that

⟨∇Fθ(π), δa⟩ =
∂

∂π(a)
Fθ(π) = −

〈
∇Gθ({Iπ(θ)}−1), {Iπ(θ)}−1Ia(θ){Iπ(θ)}−1

〉
.

Let a
(1)
n be the experiment selected following the generalized GI1. Then, according to the

definition of GI1, it minimizes the following function over SA with respect to a:

〈
∇Fθn−1(πn−1),

1

n
π − 1

n
πn−1

〉
=

k∑
a=1

π(a)

〈
∇Fθn−1(πn−1),

1

n
δa −

1

n
πn−1

〉
.

By similar Taylor expansion arguments as those for (164), we have for all n ≥ n0,∣∣∣∣Fθn−1(
n− 1

n
πn−1 +

1

n
δ
a
(1)
n
)− Fθn−1(πn−1)−

〈
∇Fθn−1(πn−1),

1

n
δ
a
(1)
n

− 1

n
πn−1

〉∣∣∣∣ ≤ L

n2
.

The above inequality implies that for all n ≥ n0, GI1 satisfies

Fθ̂n−1
(πn) = Fθ̂n−1

(
n− 1

n
πn−1 +

1

n
δ
a
(1)
n
) ≤ Fθ̂n−1

(
n− 1

n
πn−1 +

1

n
π∗

n) +
L

n2
. (165)
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For GI0, let a
(0)
n be the experiment selected at time n. Then, according to its definition we

have

Fθ̂n−1
(
n− 1

n
πn−1 +

1

n
δ
a
(0)
n
) ≤ Fθ̂n−1

(
n− 1

n
πn−1 +

1

n
δ
a
(1)
n
). (166)

Therefore, the proof of Lemma 14.18 is concluded by combining inequalities (162) – (166).

Lemma 14.19. Under Assumptions 1-5 as well as 6A-7A (or 6B-7B), the generalized GI0

selection (76) and GI1 selection (77) satisfy that there exists 0 < C <∞ such that

Fθ∗(πn)− Fθ∗(π∗) ≤ (1− 1

n
)(Fθ∗(πn−1)− Fθ∗(π∗)) + cn−1, n ≥ n0, (167)

where cn−1 =
C
n2 +

C
n
∥θn−1 − θ∗∥.

Proof of Lemma 14.19. We can rewrite (160) as

Fθn−1(πn)− Fθn−1(πn−1) +
1

n
(Fθn−1(πn−1)− Fθn−1(π

∗
n)) ≤

L

n2
. (168)

We first show that for all π0,π1 ∈ KU , and θ1,θ2 ∈ Θ,

|Fθ1(π1)− Fθ1(π0)− {Fθ2(π1)− Fθ2(π0)}| ≤ C1 ∥π0 − π1∥ ∥θ1 − θ2∥ , (169)

where C1 = supπ∈KU/2,θ∈Θ ∥∇θ∇Fθ(π)∥op is a positive constant. To show this, set g(t) =

Fθ1(π(t)) − Fθ2(π(t)), where π(t) = tπ1 + (1 − t)π0, t ∈ [0, 1] and π0,π1 ∈ KU , where KU

is chosen according to the proof of Lemma 14.18. By Lagrange mean value theorem, there

exists 0 < t < 1 such that

g(1)− g(0) = g′(t) = ⟨∇Fθ1(π(t))−∇Fθ2(π(t)),π1 − π0⟩ .

By Assumptions 1-5, Lemma 14.16 and Lemma 14.17, we know that

∥∇Fθ1(π(t))−∇Fθ2(π(t))∥
∥θ1 − θ2∥

≤ sup
π∈KU/2,θ∈Θ

∥∇θ∇Fθ(π)∥op <∞.

Set

C1 = sup
π∈KU/2,θ∈Θ

∥∇θ∇Fθ(π)∥op .

Then, the above inequality implies (169). Note that

∥πn − πn−1∥ ≤ 2

n
.
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The above inequality together with (169) implies

|(Fθ∗(πn)− Fθ∗(πn−1))− (Fθn−1(πn)− Fθn−1(πn−1))| ≤
2C1

n
∥θn−1 − θ∗∥ , and

|(Fθ∗(πn−1)− Fθ∗(π∗))− (Fθn−1(πn−1)− Fθn−1(π
∗))| ≤ 2C1 ∥θn−1 − θ∗∥ .

(170)

Because Fθn−1(π
∗) ≥ Fθn−1(π

∗
n), we have

(Fθ∗(πn−1)− Fθ∗(π∗))− (Fθn−1(πn−1)− Fθn−1(π
∗
n))

≤(Fθ∗(πn−1)− Fθ∗(π∗))− (Fθn−1(πn−1)− Fθn−1(π
∗))

≤2C1 ∥θn−1 − θ∗∥ .

(171)

By triangular inequality, inequalities (168), (170) and (171), we obtain

Fθ∗(πn)− Fθ∗(πn−1) +
1

n
(Fθ∗(πn−1)− Fθ∗(π∗))

≤|(Fθ∗(πn)− Fθ∗(πn−1))− (Fθn−1(πn)− Fθn−1(πn−1))|

+ (Fθn−1(πn)− Fθn−1(πn−1)) +
1

n

(
Fθn−1(πn−1)− Fθn−1(π

∗
n)
)
+

2C1 ∥θn−1 − θ∗∥
n

≤4C1

n
∥θn−1 − θ∗∥+ L

n2
.

(172)

In conclusion, we know that

Fθ∗(πn)− Fθ∗(πn−1) +
1

n
(Fθ∗(πn−1)− Fθ∗(π∗)) ≤ cn−1,

where cn−1 =
C
n2 +

C
n
∥θn−1 − θ∗∥ , and C = 4C1 + L.

As a corollary of Theorem 4.2, we establish the following:

Corollary 14.20. Under Assumptions 1-5 as well as Assumptions 6A-7A (or Assump-

tions 6B-7B), if there exists U > 0 such that n ≥ n0 =⇒ πn ∈ KU , then with probability

1,
∞∑
n=1

n−s
∥∥∥√n(θ̂ML

n − θ∗)
∥∥∥t <∞.

provided s > 1, 0 < t ≤ 2.

Proof of Corollary 14.20. Let θ̂n = θ̂ML
n . We first assume t = 2. Applying Lemma 14.13,

lim sup
n→∞

∥∥{−∇2
θln(θ

∗)}−1
∥∥
op

≤ 1

minπ∈KU
λmin(Iπ(θ∗))

.
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Set Dn :=
{
1− 1

n

∑n
j=1Ψ

aj
2 (Xj)

∥∥∥{∇2
θln(θ

∗)}−1
∥∥∥
op
ψ
(∥∥∥θ̂n − θ∗

∥∥∥) > 1
2
, ∥{−∇2

θln(θ
∗)}−1∥op ≤

2
minπ∈K λmin(Iπ(θ∗))

}
. By Lemma 4.1, we know that

P

(
∞⋃
n=1

∞⋂
m=n

Dm

)
= 1. (173)

Note that (134) and (135) yield

∥Wn∥ IDn ≤ IDn

∥∥∥{∇2
θln(θ

∗)}−1
∥∥∥
op
∥
√
n∇θln(θ

∗)∥

1− 1
n

∑n
j=1Ψ

aj
2 (Xj)

∥∥∥{∇2
θln(θ

∗)}−1
∥∥∥
op
ψ
(∥∥∥θ̂n − θ∗

∥∥∥) ≤ C ′ ∥∥√n∇θln(θ
∗)
∥∥ ,

where C ′ < ∞ and Wn =
√
n(θ̂ML

n − θ∗). Set Sn =
∑n

i=1∇θ log fθ∗,ai(Xi). By Assumption

2, we know that

σ2 := max
a∈A

EX∼fθ∗,a

{
∥∇θ log fθ∗,a(X)∥2

}
<∞.

By induction, we obtain that

E
∥∥√n∇θln(θ

∗)
∥∥2

=
1

n
E ∥Sn∥2

=
1

n
E
[
E
{
∥log fθ∗,an(Xn) + Sn−1∥2

∣∣Fn−1

}]
=
1

n
E
[
∥Sn−1∥2 + 2 ⟨Sn−1,E { log fθ∗,an(Xn)| Fn−1}⟩+ E

{
∥log fθ∗,an(Xn)∥2

∣∣Fn−1

}]
=
1

n
E
[
∥Sn−1∥2 + E

{
∥log fθ∗,an(Xn)∥2

∣∣Fn−1

}]
≤ 1

n

(
E ∥Sn−1∥2 + σ2

)
≤ · · · ≤ σ2.

Apply Lemma 13.1 with Xn = 1
ns

∥∥∥√n(θ̂n − θ∗)
∥∥∥2, En = Dn, γ = 1, and εn−1 =

1
ns (C

′)2E[∥
√
n∇θln(θ

∗)∥2 |Fn−1], because

∞∑
n=0

Eεn ≤
∞∑
n=1

σ2(C ′)2

ns
<∞,

we obtain that with probability 1,

∞∑
n=1

n−s · E
{∥∥∥√n(θ̂n − θ∗)

∥∥∥2 IDn

}
<∞.
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Combined with (173), we obtain that

P
( ∞∑

n=1

n−s
∥∥∥√n(θ̂n − θ∗)

∥∥∥2 = ∞
)

≤P
( ∞∑

n=1

n−s
∥∥∥√n(θ̂n − θ∗)

∥∥∥2 IDn = ∞
)
+ P

( ∞∑
n=1

n−s
∥∥∥√n(θ̂n − θ∗)

∥∥∥2 IDc
n
= ∞

)
≤0 + P

( ∞∑
n=1

IDn = ∞
)
= P

(
∞⋂
n=1

∞⋃
m=n

Dc
m

)
= 0,

that is,
∑∞

n=1 n
−s
∥∥∥√n(θ̂n − θ∗)

∥∥∥2 <∞ with probability 1.

If 0 < t < 2, set s1 = 1 − t
2
, s2 = t

2
, s0 = s−1

2
, p = 1

s1
> 1, and q = 1

s2
> 1. We have

1/p+ 1/q = 1, and s1 + s2 + 2s0 = s. Notice that(
∞∑
n=1

n−(s1+s0)p

)1/p

=

(
∞∑
n=1

n−(1+s0p)

)1/p

<∞,

and with probability 1,

∞∑
n=1

n−(s2+s0)q
∥∥∥√n(θ̂n − θ∗)

∥∥∥tq = ∞∑
n=1

n−1−s0q
∥∥∥√n(θ̂n − θ∗)

∥∥∥2 <∞.

By Hölder’s inequality, with probability 1

∞∑
n=1

n−s
∥∥∥√n(θ̂n − θ∗)

∥∥∥t ≤ ( ∞∑
n=1

n−(s1+s0)p

)1/p( ∞∑
n=1

n−(s2+s0)q
∥∥∥√n(θ̂n − θ∗)

∥∥∥tq)1/q

<∞.

Lemma 14.21. Under Assumptions 1-5 as well as Assumptions 6A-7A (or Assumptions 6B-

7B), if the sequence of estimators θ̂n satisfies that for 0 ≤ β < 1
2
,∑

n≥n0

nβ−1
∥∥∥θ̂n−1 − θ∗

∥∥∥ <∞ a.s. (174)

then the generalized GI0 and GI1 (with θn replaced by θ̂n) satisfy

nβZn
a.s.−→ 0,

where Zn = Fθ∗(πn)− Fθ∗(π∗).
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Proof of Lemma 14.21. Based on Lemma 14.19, the GI0 and GI1 selection rules satisfy that

there exists C <∞ such that for any n ≥ n0,

E [Zn | Fn−1] ≤
(
1− 1

n

)
Zn−1 + cn−1,

where cn−1 = C
(

1
n2 +

∥θ̂n−1−θ∗∥
n

)
. Notice that with probability 1, we have

∞∑
n=n0+1

(n− 1)βcn−1 ≤
∞∑

n=n0

C · nβ
( 1

n2
+

∥∥∥θ̂n−1 − θ∗
∥∥∥

n

)
=

∞∑
n=n0+1

C · 1

n2−β
+

∞∑
n=n0+1

C

n1−β

∥∥∥θ̂n−1 − θ∗
∥∥∥ <∞.

Applying the third part of Lemma 14.15 to Zn with an = 1/(n+ 1), c = 1, we obtain

nβZn
a.s.−→ 0.

Proof of Theorem 4.3. By Corollary 14.20, we know that with probability 1, if 0 ≤ β < 1
2
,

then with probability 1,

∞∑
n=1

nβ−1
∥∥∥θ̂ML

n − θ∗
∥∥∥ =

∞∑
n=1

nβ−3/2
∥∥∥√n(θ̂ML

n − θ∗)
∥∥∥ <∞.

By Lemma 14.21, we obtain that nβZn → 0 a.s. P∗. That is, limn→∞ nβ{Fθ∗(πn)−Fθ∗(π∗)},
a.s.

Next, we prove by contradiction that, when Fθ∗(·) has a unique minimizer, we also have

limn→∞ πn = π∗ a.s. Assume, on the contrary, that there exists a sub-sequence such that

πnl
→ π1 ̸= π∗, as l → ∞. Then, by the continuity of Fθ∗(·), we have Fθ∗(πnl

) → Fθ∗(π1).

Set β = 0. We obtain that

Fθ∗(πn) → Fθ∗(π∗) a.s. P∗.

Given that Fθ∗(π) has a unique global minimizer, it must be the case that Fθ∗(π1) ̸= Fθ∗(π∗).

This contradicts with the above display.
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14.6 Proof of Theorem 4.4

Proof of Theorem 4.4. By applying Theorem 4.2 and Theorem 4.3, we conclude the proof of

Theorem 4.4.

14.7 Proof of Theorem 4.5

Proof of Theorem 4.5. Under the assumptions of Theorem 4.4, the conclusions from Theo-

rem 4.1 and Theorem 4.3 still apply. Hence, we have

lim
n→∞

Iπn(θ̂ML
n ) = lim

n→∞

∑
a∈A

πn(a)Ia(θ̂
ML
n ) = Iπ∗

(θ∗) a.s. ,

and

lim
n→∞

∥∥∥{Iπn(θ̂ML
n )}−1/2∇g(θ̂ML

n )
∥∥∥ =

∥∥{Iπ∗
(θ∗)}−1/2∇g(θ∗)

∥∥ a.s.

By Slutsky’s theorem and Theorem 4.4, we derive the limit result as in (23).

Moreover, through the Delta method, we find

√
n(g(θ̂ML

n )− g(θ∗))

∥{Iπ∗(θ∗)}−1/2∇g(θ∗)∥
d−→ N(0, 1).

Once again, by Slutsky’s theorem, we establish the limit result in (24).

14.8 Proof of Theorem 4.8

We first provide an extension of the Cramér-Rao lower bound for unbiased estimators based

on sequential observations following an active experiment selection rule.

Lemma 14.22 (Craḿer-Rao lower bound for sequential data). Assume that for some initial

values a01, · · · , a0n0
∈ A, we consider initial selections ai = a0i for i = 1, . . . , n0, such that the

sum
∑n0

i=1 Ia0i
(θ) is nonsingular for all θ ∈ Θ. Given any deterministic selection function

hn, we consider the selections an = hn(a1, X1, · · · , an−1, Xn−1) ∈ A,∀n > n0. Let Tn =

T (X1, X2, · · · , Xn,an) be an unbiased estimator of vector h(θ) with a finite second moment,

for all θ ∈ Θ, that is h(θ) = Eθ[Tn] and supθ∈Θ Eθ ∥Tn∥2 <∞. Then, under Assumptions 1-

4, we have

covθ(Tn) ⪰
1

n

{
∇θh(θ)

}T

{IEθπn(θ)}−1∇θh(θ).

Specifically, if h(θ) = θ, then

Gθ(n covθ(Tn)) ≥ inf
π∈SA

Gθ({Iπ(θ)}−1).
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Proof of Lemma 14.22. Assume h(θ) ∈ Rl. For any b ∈ Rl, define hb(θ) = bTEθ

[
Tn

]
.

Let {Xa
i }a∈A,i≥1 be a sequence of independent random elements, such that Xa

i ∼ fθ,a(·).
According to Lemma 13.8, we can assume that the observations and experiments are

a1, X
a1
1 , · · · , an, Xan

n in the rest of the proof, where an+1 = hn+1(a1, X
a1
1 , · · · , an, Xan

n ), for

all n ≥ n0.

The joint density for XA
n = {Xa

i }1≤i≤n,a∈A and an = (a1, · · · , an) is given by

fθ(X
A
n ,a

n) =
n∏

i=1

∏
a∈A

fθ,a(X
a
i )I(a1 = a1, · · · , an0 = an0 , an0+1 = an0+1, · · · , an = an).

Notice that

∇θfθ(X
A
n ,a

n) = fθ(X
A
n ,a

n)
n∑

i=1

∑
a∈A

∇θ log fθ,a(X
a
i ).

Assume that probability density fθ,a(·) is with respect to baseline measure µa(·). By As-

sumption 2, denote the support of probability density fθ,a(·) by Ωa = supp(fθ,a), which does

not depend on θ. Let product measure dµn(XA
n ) =

∏
1≤i≤n,a∈A dµa(X

a
i ), and product space

Ω1 = ×a∈AΩa, Ω
n = ×a∈AΩa ×Ωn−1.

Set Tn = Tn(a1, X
a1
1 , · · · , an, Xan

n ). Because

Eθ[b
TTn] =

∑
an∈An

∫
Ωn

bTTn(a1, X
a1
1 , · · · , an, Xan

n )fθ(X
A
n ,a

n)dµn(XA
n ),

we know that

∇θhb(θ) = ∇θEθ[b
TTn] =

∑
an∈An

∇θ

∫
Ωn

bTTn(a1, X
a1
1 , · · · , an, Xan

n )fθ(X
A
n ,a

n)dµn(XA
n ).

By Assumption 2, we know that for any a ∈ A

∥∇θ log fθ,a(X
a)∥ ≤ ∥∇θ log fθ∗,a(X

a)∥+Ψa
1(X

a) max
θ,θ′∈Θ

∥θ − θ′∥ =: Fa(X
a),∀Xa ∈ Ωa,

where the dominate function Fa satisfies that

sup
θ∈Θ

EXa∼fθ,a{Fa(X
a)}2 <∞.
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Notice that∫
Ωn

bTTn(a1, X
a1
1 , · · · , an, Xan

n )∇θfθ(X
A
n ,a

n)dµn(XA
n )

=

∫
Ωn

bTTn(a1, X
a1
1 , · · · , an, Xan

n )
n∑

i=1

∑
a∈A

∇θ log fθ,a(X
a
i )fθ(X

A
n ,a

n)dµn(XA
n ),

∥∥∥∥∥bTTn

n∑
i=1

∑
a∈A

∇θ log fθ,a(X
a
i )

∥∥∥∥∥ ≤ |bTTn| ·
n∑

i=1

∑
a∈A

Fa(X
a
i ),

and by Hölder’s inequality,

Eθ[|bTTn| ·
n∑

i=1

∑
a∈A

Fa(X
a
i ) ≤

n∑
i=1

∑
a∈A

(
Eθ[(b

TTn)
2] · Eθ[{Fa(X

a
i )}2]

)1/2
<∞

Taking into account that Ωn is independent of θ, and by applying the Dominated Con-

vergence Theorem together with the classical proof of differentiation under the integral sign,

we arrive at

∇θ

∫
Ωn

bTTn(a1, X
a1
1 , · · · , an, Xan

n )fθ(X
A
n ,a

n)dµn(XA
n )

=

∫
Ωn

bTTn(a1, X
a1
1 , · · · , an, Xan

n )∇θfθ(X
A
n ,a

n)dµn(XA
n ).

In conclusion, we know that

∇θhb(θ) = Eθ

[
bTTn

n∑
i=1

∑
a∈A

∇θ log fθ,a(X
a
i )

]
.

Next, we show that

Eθ

[
bTTn

n∑
i=1

∑
a∈A,a̸=ai

∇θ log fθ,a(X
a
i )

]
= 0. (175)

First of all, let Fi+1 = σ{a1, Xa1
1 , a2, X

a2
2 , · · · , ai, X

ai
i }. Note that ai+1 is measurable with

respect to Fi for all i. Notice that {Xa
n}a∈A are independent of Fn−1, as well as {Xa

n}a∈A,a ̸=an
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and Xan
n are independent, given Fn−1. Also recall that an is measurable in Fn−1. Thus,

Eθ

[
bTTn

∑
a∈A,a ̸=an

∇θ log fθ,a(X
a
n)
∣∣∣Fn−1, X

an
n

]
=bTTn

∑
a∈A,a ̸=an

Eθ

[
∇θ log fθ,a(X

a
n)
∣∣∣Fn−1, X

an
n

]
=bTTn

∑
a∈A,a ̸=an

Eθ

[
∇θ log fθ,a(X

a
n)
]
= 0.

Note that for fixed 1 ≤ i < n, {Xa
j }j≥i,a∈A and Fi−1 are independent. Define another

σ-algebra, Gi−1 = σ(Fi−1, {Xa
j }i+1≤j≤n,a∈A). Note that ai, ai+1, · · · , an are measurable in

σ(Gi−1, X
ai
i ). Furthermore, {Xa

i }a∈A,a̸=ai and Xai
i are independent, given Gi−1. Thus, for

any 1 ≤ i < n

Eθ

[
bTTn

∑
a∈A,a̸=ai

∇θ log fθ,a(X
a
i )
∣∣∣Gi−1, X

ai
i

]
=bTTn

∑
a∈A,a̸=ai

Eθ

[
∇θ log fθ,a(X

a
i )
∣∣∣Gi−1, X

ai
i

]
=bTTn

∑
a∈A,a̸=ai

Eθ

[
∇θ log fθ,a(X

a
i )
]
= 0.

By the law of iterated expectation, we have proved (175). Hence, we know that

∇θhb(θ) = Eθ

[
bTTn∇θ

n∑
i=1

log fθ,ai(X
ai
i )

]
= 0.

Set Yn = ∇θ

∑n
i=1 log fθ,ai(X

ai
i ), and we have

∇θhb(θ) = Eθ[YnT
T
n b] = covθ(Yn, b

TTn).

By multivariate Cauchy-Schwartz inequality (75), for any b ∈ Rl,

bT covθ(Tn)b

=varθ(b
TTn)

≥ covθ

(
bTTn,Yn

){
covθ(Yn)

}−1
covθ

(
Yn, b

TTn

)
=bT

{
∇θh(θ)

}T{
covθ(Yn)

}−1∇θh(θ)b.
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Note that

Eθ[Yi−1{∇θ log fθ,ai(X
ai
i )}T ] = Eθ

{
Yi−1 · Eθ

[
{∇θ log fθ,ai(X

ai
i )}T |Fi−1

]}
= 0.

Thus

covθ(Yn) = Eθ[YnY
T
n ] = Eθ[Yn−1Y

T
n−1] + Eθ[Iai(θ)] = n · IEθπn(θ).

In conclusion, for any b ∈ Rl, we obtain that

bT covθ(Tn)b = varθ(b
TTn) ≥ bT

[
1

n

{
∇θh(θ)

}T{
IEθπn(θ)

}−1

∇θh(θ)

]
b.

This implies that

covθ(Tn) ⪰
1

n
{∇θh(θ)}T{IEθπn(θ)}−1∇θh(θ).

If h(θ) = θ, we know that

n covθ(Tn) ⪰ {IEθπn(θ)}−1.

By assumption 5, we obtain

Gθ(n covθ(Tn)) ≥ Gθ({IEθ [πn](θ)}−1) ≥ inf
π∈SA

Gθ({Iπ(θ)}−1).

Proof of Theorem 4.8.

Part 1 Notice that L(θ∗, θ̂) is a loss function, which means that L(θ∗, θ̂) ≥ L(θ∗,θ∗) = 0.

Due to L(θ∗, θ̂) is differentiable in θ̂, we know that ∇θ̂L(θ
∗,θ∗) = 0.

Applying first order Taylor expansion to L(θ∗, θ̂) with respect to θ̂, we obtain that

L(θ∗,Tn) =
1

2

〈
∇2

θ̂
L(θ∗, θ̂)

∣∣∣
θ̂=θ̃n

(θ∗ − Tn),θ
∗ − Tn

〉
≥ η ∥θ∗ − Tn∥2 , (176)

where θ̃n = tnθ
∗ + (1− tn)Tn for some tn ∈ (0, 1). Thus,

Eθ∗n · L(θ∗,Tn) ≥ ηEθ∗
∥∥√n(Tn − θ∗)

∥∥2 .
To show (26), without loss of generality, we assume that

lim sup
n→∞

Eθ∗
∥∥√n(Tn − θ∗)

∥∥2 <∞.
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This implies Tn
P∗→ θ∗. It also implies that Tn has finite second moment, and, thus, conditions

of Lemma 14.22 are satisfied. By Lemma 14.22, we have covθ(Tn) ⪰ 1
n
{IEπn(θ)}−1.

If L(θ∗, θ̂) ≡
〈
Hθ∗(θ∗ − θ̂),θ∗ − θ̂

〉
, we obtain

Eθ∗ [nL(θ∗,Tn)] = n⟨Hθ∗ , covθ∗(Tn)⟩ ≥ tr(Hθ∗{IEπn(θ∗)}−1).

If L(θ∗, θ̂) ̸≡
〈
Hθ∗(θ∗ − θ̂),θ∗ − θ̂

〉
, under the theorem’s assumption

lim sup
n→∞

Eθ∗n ∥Tn − θ∗∥2 I(∥Tn − θ∗∥ > ε) = 0.

Define Vn =
√
n
(
θ∗ − Tn

)
, and its truncation V M

n = VnI(∥Vn∥ ≤M). Define

H(θ∗,Tn) =
1

2
∇2

θ̂
L(θ∗, θ̂)

∣∣∣
θ̂=θ̃n

,

where θ̃n = tnθ
∗+(1−tn)Tn. According to (176),L(θ

∗,Tn) = ⟨H(θ∗,Tn)(θ
∗ − Tn),θ

∗ − Tn⟩.
Furthermore, for any ε > 0,

Eθ∗

∣∣∣n · L(θ∗,Tn)− ⟨Hθ∗Vn,Vn⟩
∣∣∣I(∥Tn − θ∗∥ ≤ ε)

≤ max
∥θ̂−θ∗∥≤ε

∥∥∥H(θ∗, θ̂)−Hθ∗

∥∥∥
op
Eθ∗ ∥Vn∥2

=o(1).

Now, we obtain that

Eθ∗

[
n · L(θ∗,Tn)

]
≥ Eθ∗

[
n · L(θ∗,Tn) · I(∥Vn∥ ≤ ε

√
n)
]

≥ Eθ∗

〈
Hθ∗V ε

√
n

n ,V ε
√
n

n

〉
− max
∥θ̂−θ∗∥≤ε

∥∥∥H(θ∗, θ̂)−Hθ∗

∥∥∥
op
Eθ∗ ∥Vn∥2

= Eθ∗ ⟨Hθ∗Vn,Vn⟩ − Eθ∗n ∥Tn − θ∗∥2 I(∥Tn − θ∗∥ > ε)− o(1)

≥ min
π∈SA

tr(Hθ∗{Iπ(θ∗)}−1)− Eθ∗n ∥Tn − θ∗∥2 I(∥Tn − θ∗∥ > ε)− o(1),

where the last inequality is due to Lemma 14.22. Taking the inferior limit as n → ∞ and

then taking the inferior limit as ε→ 0+, we obtain

lim inf
n→∞

Eθ∗

[
n · L(θ∗,Tn)

]
≥ min

π∈SA
tr(Hθ∗{Iπ(θ∗)}−1).

The ‘in particular’ part is proved by noting that Hθ∗ = Ip in this case.
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Part 2 Recall the log-likelihood defined in 4. Because fθ,a(·) = hξa,a(·), we obtain that

−∇2
θln(θ;an) = − 1

n

n∑
i=1

ZT
ai
∇2

ξai
log hξai ,ai(Xi)Zai ⪰ α

∑
a∈A

πn(a)Z
T
a Za, (177)

and Iξa,a(ξa) = −EXa∼hξa,a
∇2

ξa
log hξa,a(X

a) ⪰ αI, where ξa = Zaθ.

Under Assumption 6A, we obtain Ia(θ) = ZT
a Iξa,a(ξa)Za and

∇2
θ log fθ,a(X

a) = ZT
a ∇2

ξa log hξa,a(X
a)Za,

and

Iπ(θ∗) =
∑
a∈A

π(a)ZT
a Iξa,a(ξ

∗
a)Za ⪰ α

∑
a∈A

π(a)ZT
a Za

is a positive definite matrix.

Applying the first order Taylor expansion of L(θ∗, θ̂) over θ̂, we obtain that

L(θ∗, θ̂n) =
1

2

〈
∇2

θ̂
L(θ∗, θ̂)

∣∣∣
θ̂=θ̃n

(θ∗ − θ̂n),θ
∗ − θ̂n

〉
≤ η′

∥∥∥θ∗ − θ̂n

∥∥∥2 , (178)

where θ̃n = tnθ
∗ + (1− tn)θ̂n for some tn ∈ (0, 1). Recall that Gθ(Σ) = tr(HθΣ). Note that

∇Gθ(Σ) = Hθ and κ(Hθ) ≤ η′

η
<∞, which implies that Gθ(Σ) satisfies Assumption 5.

By Theorem 4.3, πn
P∗→ π∗ = argminπ∈SA Fθ∗(π) and Iπ∗

(θ) is nonsingular for any

θ ∈ Θ, applying Theorem 4.2, we obtain

√
n(θ̂ML

n − θ∗)
d→ Np

(
0,
{
Iπ∗

(θ∗)
}−1
)
as n→ ∞. (179)

Notice that for any n ≥ n0, by Lemma 14.1 and Assumption 6B, there exists C > 0 such

that

−∇2
θln(θ) ⪰ α

∑
a∈A

πn(a)Z
T
a Za ⪰ α inf

n≥n0

λmin

(
πn(a)Z

T
a Za

)
Ip ⪰ 2CIp.

By Taylor expansion, we obtain

0 ≤ ln(θ̂
ML
n ;an)− ln(θ

∗;an) ≤
〈
∇θln(θ

∗;an), θ̂
ML
n − θ∗

〉
− C

∥∥∥θ̂ML
n − θ∗

∥∥∥2 .
Thus, ∥∥∥θ̂ML

n − θ∗
∥∥∥ ≤ 1

C
∥∇θln(θ

∗;an)∥ .
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By Theorem 6.2 in DasGupta (2008), to show that

Eθ∗

[
n
∥∥∥θ̂ML

n − θ∗
∥∥∥2 ]→ tr(

{
Iπ(θ∗)

}−1
),

combined with (179), it suffices to show that

lim sup
n→∞

Eθ∗

(√
n
∥∥∥θ̂ML

n − θ∗
∥∥∥)2+δ

<∞.

Note that

Eθ∗

(√
n
∥∥∥θ̂ML

n − θ∗
∥∥∥)2+δ

≤ 1

(C)1+δ
Eθ∗

∥∥√n∇θln(θ
∗;an)

∥∥2+δ
.

By classical cr-inequality (see Chapter 9 of Lin (2010)), we have

Eθ∗
∥∥√n∇θln(θ

∗;an)
∥∥2+δ ≤ pδ/2

p∑
j=1

Eθ∗

∣∣∣ n∑
i=1

1√
n
eT
j ∇θ log fθ∗,ai(Xi)

∣∣∣2+δ

.

Since
∑n

i=1 e
T
j ∇θ log fθ∗,ai(Xi) is a martingale, applying inequality (45) in Lin (2010), we

obtain

Eθ∗

∣∣∣ n∑
i=1

1√
n
eT
j ∇θ log fθ∗,ai(Xi)

∣∣∣2+δ

≤ C2+δ · nδ/2

n∑
i=1

Eθ∗

∣∣∣ 1√
n
eT
j ∇θ log fθ∗,ai(Xi)

∣∣∣2+δ

≤ C2+δ

∑
a∈A

EXa∼fθ∗,a ∥∇θ log fθ∗,a(X
a)∥2+δ

≤ C2+δ

∑
a∈A

EXa∼fθ∗,a

∥∥∇θ log hξ∗a,a(X
a)
∥∥2+δ ∥Za∥2+δ

op .

In conclusion, we obtain

sup
n≥n0

Eθ∗

(√
n
∥∥∥θ̂ML

n − θ∗
∥∥∥)2+δ

<∞. (180)

Notice that as θ̂n
P∗→ θ∗, we know that

1

2
∇2

θ̂
L(θ∗, θ̂)

∣∣∣
θ̂=θ̃n

P∗→ Hθ∗ .

Thus, we obtain that

nL(θ∗, θ̂ML
n ) = n

〈
Hθ∗(θ∗ − θ̂ML

n ),θ∗ − θ̂ML
n

〉
+ op(1). (181)
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By (180) and (178), we obtain that

sup
n≥n0

Eθ∗

[
nL(θ∗, θ̂ML

n )
]1+δ/2

≤ (η′)1+δ/2 sup
n≥n0

Eθ∗

(√
n
∥∥∥θ̂ML

n − θ∗
∥∥∥)2+δ

<∞.

Applying Theorem 6.2 in DasGupta (2008), we obtain that as n→ ∞,

Eθ∗

[
nL(θ∗, θ̂ML

n )
]
→ E ⟨Hθ∗V ,V ⟩ = tr(Hθ∗{Iπ(θ∗)}−1),V ∼ Np(0p, {Iπ(θ∗)}−1).

Applying Theorem 4.7, the proof of the second part of Theorem 4.8 is completed.

14.9 Proof of Theorem 4.9

Proof of Theorem 4.9. The proof of Theorem 4.9 is similar to that of Theorem 8.8 and

Theorem 8.11 in Van der Vaart (2000). Thus, we will only state the main differences and

omit the repetitive details.

For proving the first part of the theorem, we follow the proof of Theorem 8.8 in Van der

Vaart (2000). We need to verify Theorem 8.3, Theorem 7.10, as well as Proposition 8.4, as

presented in Van der Vaart (2000), under our sequential setting.

For proving the second part of the theorem, we follow the proof of Theorem 8.11 in Van der

Vaart (2000). It is sufficient to modify and prove Theorem 7.2 and Proposition 8.6, as

presented in Van der Vaart (2000), under our sequential setting.

Below we verify the above mentioned results in our context.

Differentiable in quadratic mean We need to show that densities {fθ,a(·)}a∈A are dif-

ferentiable in quadratic mean at θ, which means that∫ [√
fθ+h,a(x)−

√
fθ,a(x)−

1

2
hT∇θ log fθ,a(x)

√
fθ,a(x)

]2
dµ(x) = o(∥h∥2). (182)

By applying the regularity conditions and using Lemma 7.6 from Van der Vaart (2000), we

have completed the proof of (182) for any a ∈ A and θ, where θ is an interior point of Θ.

Modified Theorem 7.2 in Van der Vaart (2000) We modified Theorem 7.2 in

Van der Vaart (2000) in our context as follows. Let Pn,θ denote the joint distribution of

(a1, X1, · · · , an, Xn) following some experiment selection rule with the empirical selection
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proportion πn. Then, given that hn = h+ o(1),

log
Pn,θ+hn/

√
n

Pn,θ

(a1, X1, · · · , an, Xn)

∼ log
n∏

j=1

fθ+hn/
√
n,aj(X

aj
j )

fθ,aj(X
aj
j )

=
1√
n

n∑
j=1

hT∇θ log fθ,aj(X
aj
j )− 1

2
hTIπ(θ)h+ op(1)

(183)

where {Xa
j }a∈A,j≥1, where X

a
j ∼ fθ,a(·) are independent random variables, ‘∼’ means that

random variables on both sides share the same distribution, the second line is due to

Lemma 13.8, and the last line is obtained following a similar proof as that of Theorem

7.2 in Van der Vaart (2000), which is detailed below.

By Assumptions 1-4, the Dominated Convergence Theorem, and the proof of the classical

differentiation under the integral sign, we arrive at

E[∇θ log fθ,aj(X
aj
j )|Fj−1] = 0 and E

[ n∑
j=1

∇θ log fθ,aj(X
aj
j )
]
= 0.

The proof of the first Equation (7.3) in Van der Vaart (2000) needs to be modified as follows.

Let Wnj = 2
(√

fθ+hn/
√

n,aj
(X

aj
j )

fθ,aj (X
aj
j )

−1
)
and Vn =

∑n
j=1Wnj− 1√

n
hT
∑n

j=1 ∇θ log fθ,aj(X
aj
j ). We

know that

var
(
Vn

)
=var

(
Vn−1

)
+ var

(
Wnn −

1√
n
hT∇θ log fθ,an(X

an
n )
)
+ 2 cov

(
Vn−1,Wnn −

1√
n
hT∇θ log fθ,an(X

an
n )
)

and

cov
(
Vn−1,Wnn −

1√
n
hT∇θ log fθ,an(X

an
n )
)

=E
[(
Vn−1 − EVn−1

)(
Wnn −

1√
n
hT∇θ log fθ,an(X

an
n )− E

(
Wnn −

1√
n
hT∇θ log fθ,an(X

an
n )
))]

=E
{(
Vn−1 − EVn−1

)
E
[(
Wnn −

1√
n
hT∇θ log fθ,an(X

an
n )− E

(
Wnn −

1√
n
hT∇θ log fθ,an(X

an
n )
))∣∣∣Fn−1

]}
=0.
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By induction and (182), we obtain that as n→ ∞,

var
(
Vn

)
=

n∑
j=1

var
(
Wnj −

1√
n
hT∇θ log fθ,aj(X

aj
j )
)

≤
n∑

j=1

E
(
Wnj −

1√
n
hT∇θ log fθ,aj(X

aj
j )
)2

≤
n∑

j=1

∑
a∈A

E
(
2
(√fθ+hn/

√
n,a(X

a
j )

fθ,a(Xa
j )

− 1
)
− 1√

n
hT∇θ log fθ,a(X

a
j )
)2

≤8n
∑
a∈A

∫ [√
fθ+hn/

√
n,a(x)−

√
fθ,a(x)−

1

2
√
n
hT

n∇θ log fθ,a(x)
√
fθ,a(x)

]2
dµ(x)

+ 2(h− hn)
T
∑
a∈A

Ia(θ)(h− hn)

=8o(∥h∥2) + 2(h− hn)
T
∑
a∈A

Ia(θ)(h− hn) → 0.

Because of (182), we obtain that∣∣∣∣∣
∥∥∥∥√fθ+hn/

√
n,a(x)−

√
fθ,a(x)

∥∥∥∥
L2(µ)

−
∥∥∥∥ 1

2
√
n
hT

n∇θ log fθ,a(x)
√
fθ,a(x)

∥∥∥∥
L2(µ)

∣∣∣∣∣
≤
(∫ [√

fθ+hn/
√
n,a(x)−

√
fθ,a(x)−

1

2
√
n
hT

n∇θ log fθ,a(x)
√
fθ,a(x)

]2
dµ(x)

)1/2
= o
(∥h∥√

n

)
.

Note that ∥∥∥∥ 1

2
√
n
hT

n∇θ log fθ,a(x)
√
fθ,a(x)

∥∥∥∥2
L2(µ)

=
1

4n
hT

nIa(θ)hn = O
(∥h∥2

n

)
.

By inequality |x2 − y2| ≤ |x− y|
∣∣|x|+ |y|

∣∣ ≤ |x− y|
∣∣2|x|+ |x− y|

∣∣, we obtain∣∣∣∣∣
∥∥∥∥√fθ+hn/

√
n,a(x)−

√
fθ,a(x)

∥∥∥∥2
L2(µ)

− 1

4n
hT

nIa(θ)hn

∣∣∣∣∣
≤o
(∥h∥√

n

) ∣∣∣∣2 ·O(∥h∥√
n
) + o

(∥h∥√
n

)∣∣∣∣ = o
(∥h∥2

n

)
.

115



Thus, the second Equation (7.3) in Van der Vaart (2000) is modified by

E[Wnj|Fj−1] = 2
(∫ √

fθ+hn/
√
n,aj(x)fθ,aj(x)dµ(x)− 1

)
=−

∫ [√
fθ+hn/

√
n,aj(x)−

√
fθ,aj(x)

]2
dµ(x) = − 1

4n
hT

nIaj(θ)hn + o(
1

n
)

=− 1

4n
hTIaj(θ)h+

1

n
o(1),

(184)

where the o(1) converges uniformly to 0 as n→ ∞. Now, we obtain that

Eπn = π + o(1), and E
n∑

j=1

Wnj = −1

4
hTIEπn(θ)h+ o(1) = −1

4
hTIπ(θ)h+ o(1).

We define

Ani = nW 2
ni −

(
hT∇θ log fθ,ai(X

ai
i )
)2

and

A′
ni =

∑
a∈A

∣∣∣4n(
√
fθ+hn/

√
n,a(X

a
i )

fθ,a(Xa
i )

− 1
)2

−
(
hT∇θ log fθ,a(X

a
i )
)2∣∣∣.

Notice that

A′
ni =

∑
a∈A

∣∣∣4n(
√
fθ+hn/

√
n,a(X

a
i )

fθ,a(Xa
i )

− 1
)2

−
(
hT∇θ log fθ,a(X

a
i )
)2∣∣∣

≤
∑
a∈A

∣∣∣2√n(
√
fθ+hn/

√
n,a(X

a
i )

fθ,a(Xa
i )

− 1
)
−
(
hT∇θ log fθ,a(X

a
i )
)∣∣∣·

∣∣∣2√n(
√
fθ+hn/

√
n,a(X

a
i )

fθ,a(Xa
i )

− 1
)
+
(
hT∇θ log fθ,a(X

a
i )
)∣∣∣

By Hölder’s inequality and the definition of differentiable in quadratic mean at θ, we obtain
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that

E|A′
ni| ≤

∑
a∈A

(
E
∣∣∣2√n(

√
fθ+hn/

√
n,a(X

a
i )

fθ,a(Xa
i )

− 1
)
−
(
hT∇θ log fθ,a(X

a
i )
)∣∣∣2)1/2·

(
E
∣∣∣2√n(

√
fθ+hn/

√
n,a(X

a
i )

fθ,a(Xa
i )

− 1
)
+
(
hT∇θ log fθ,ai(X

ai
i )
)∣∣∣2)1/2

≤
∑
a∈A

(
E
∣∣∣2√n(

√
fθ+hn/

√
n,a(X

a
i )

fθ,a(Xa
i )

− 1
)
−
(
hT∇θ log fθ,a(X

a
i )
)∣∣∣2)1/2·

[(
E
∣∣∣2√n(

√
fθ+hn/

√
n,a(X

a
i )

fθ,a(Xa
i )

− 1
)
− hT∇θ log fθ,a(X

a
i )
∣∣∣2)1/2

+ 2
(
E
∣∣∣(hT∇θ log fθ,a(X

a
i )
)∣∣∣2)1/2].

Due to

(
E
∣∣∣2√n(

√
fθ+hn/

√
n,a(X

a
i )

fθ,a(Xa
i )

− 1
)
−
(
hT∇θ log fθ,a(X

a
i )
)∣∣∣2)1/2

≤
(
E
∣∣∣2√n(

√
fθ+hn/

√
n,a(X

a
i )

fθ,a(Xa
i )

− 1
)
−
(
hT

n∇θ log fθ,a(X
a
i )
)∣∣∣2)1/2

+
(
E
∣∣∣(hn − h

)T
∇θ log fθ,a(X

a
i )
∣∣∣2)1/2

=o(∥hn∥) +
(
(h− hn)

TIa(θ)(h− hn)
)1/2

= o(1),

we obtain that

E|A′
ni| =

∑
a∈A

o(1)
(
o(1) + 2

(
hTIa(θ)h

)1/2)
= o(1).

Because |Ani| ≤ A′
ni, we know that E|Ani| → 0 and E 1

n

∑n
i=1 |Ani| → 0 as n → ∞. By

Lemma 13.2 and (29), we know that

n∑
i=1

W 2
ni =

1

n

n∑
i=1

(
hT∇θ log fθ,ai(X

ai
i )
)2

+
1

n

n∑
i=1

Ani
Pθ→ hTIπ(θ)h.
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By triangle inequality and Markov’s inequality, as n→ ∞,

P(max
1≤i≤n

|Wni| > ε
√
2) ≤ nP(|Wni| > ε

√
2)

≤nP
((

hT∇θ log fθ,ai(X
ai
i )
)2
> nε2

)
+ nP

(
|Ani| > nε2

)
≤nP

(∑
a∈A

(
hT∇θ log fθ,a(X

a
i )
)2
> nε2

)
+ nP

(
|A′

ni| > nε2
)

≤ 1

ε2
E
∑
a∈A

(
hT∇θ log fθ,a(X

a
i )
)2
I
(∑

a∈A

(
hT∇θ log fθ,a(X

a
i )
)2
> nε2

)
+

EA′
ni

ε2

→0.

Based on the rest of the proof of Theorem 7.2 in Van der Vaart (2000), we complete the

proof of modified Theorem 7.2.

Modified Theorem 7.10 in Van der Vaart (2000) . The modified theorem is as follows:

if statistics Tn = Tn(a1, X
a1
1 , · · · , an, Xan

n ) satisfies the limit results in (29) under every h,

then there exists a randomized statistic T in the experiment {Np(h, {Iπ(θ)}−1) : h ∈ Rp}
such that Tn

h
⇝ T for every h.

The proof mostly follows that of Theorem 7.10 in Van der Vaart (2000) with the following

modifications. Without loss of generality, let

Pn,h = Pn,θ+h/
√
n(a1, X

a1
1 , · · · , an, Xan

n ),J = Iπ(θ),∆n =
1√
n

n∑
j=1

∇θ log fθ,aj(X
aj
j ).

There exists random vector (S,∆) such that

(Tn,∆n)
0
⇝ (S,∆).

Applying the modified Theorem 7.2 and follow similar arguments as those in the proof

of Theorem 7.10 in Van der Vaart (2000), we obtain(
Tn, log

dPn,h

dPn,0

)
0
⇝

(
S,hT∆− 1

2
hTJh

)
.

The rest of the proof remains unchanged.

Modified Theorem 8.3 in Van der Vaart (2000) With a similar proof, the conclusion

in Theorem 8.3 in Van der Vaart (2000) is modified as follows. If the limit results in (29)

hold, then there exists a randomized statistic T in {Np(h, {Iπ(θ)}−1) : h ∈ Rp} such that
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T − h has the distribution Lπ
θ for every h.

Proposition 8.4 in Van der Vaart (2000) This proposition directly apply to our setting

and does not required to be changed.

With the above modifications, we follow a similar proof as that for Theorem 8.8 in Van der

Vaart (2000), we obtain (30) as well as the first part of the theorem.

Proposition 8.6 in Van der Vaart (2000) This proposition directly applies to our

problem and does not need to be modified.

Following the proof of Theorem 8.11 Van der Vaart (2000) with the above modifications,

we complete the proof of (31) and the second part of the theorem.

14.10 Proof of Theorem 4.10

Proof of Theorem 4.10. By Theorem 4.1, we know that

lim
n→∞

θ̂ML
n = θ∗, a.s.

Because limn→∞ τn = ∞ a.s., we obtain that

lim
n→∞

θ̂ML
τn = θ∗, a.s.

14.11 Proof of Theorem 4.11

We prove the theorem for a class more general stopping rules instead. We first define a

deterministic stopping rule

τ(Γθ∗ , c,θ,π) = min
{
m ≥ n0;

1

m
Γθ∗({Iπ(θ)}−1) ≤ c

}
,

where Γθ is a continuous function that maps a positive definite matrix to a positive number, c

is a positive number, θ ∈ Θ, and π ∈ SA. Note that τ(Γ, c,θ,π) = max{⌈Γ({Iπ(θ)}−1)
c

⌉, n0},
where ⌈·⌉ is the ceiling function.

Consider a class of functions {Γθ}θ∈Θ, such that for any 0 < u1 < u2 <∞,

lim
θ→θ∗

max
u1I⪯Σ⪯u2I

|Γθ(Σ)− Γθ∗(Σ)| = 0, and min
θ∈Θ

min
u1I⪯Σ⪯u2I

Γθ(Σ) > 0. (185)
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Define a random stopping time

τc = min
{
m ≥ n0;

1

m
Γθ̂m

({Iπm(θ̂m)}−1) ≤ c
}
, (186)

where θ̂m is an estimator of θ based onm observations. Later, we will show that the stopping

rules considered in Theorem 4.11 are special cases of the general stopping rule defined above.

The following theorem generalizes Theorem 4.11.

Theorem 14.23 (General result for Asymptotic normality with stopping time). Let θ̂ML
n

be the MLE following the experiment selection rule GI0 or GI1, as described in Algorithm 1

and Algorithm 2. Assume that Fθ∗(π) has a unique minimizer π∗. Let {cn}n≥0 be a positive

decreasing sequence such that cn → 0 as n → ∞. Consider the stopping time τcn given by

(186), where Γθ satisfies (185). Then,

√
τn

{
Iπτcn (θ̂ML

τcn
)
}1/2

(θ̂ML
τcn

− θ∗)
d→ Np

(
0p, Ip

)
. (187)

Furthermore, for any continuously differentiable function g : Θ → R such that ∇g(θ∗) ̸= 0,

√
τcn(g(θ̂

ML
τcn

)− g(θ∗))∥∥∥∥{Iπτcn (θ̂ML
τcn

)
}−1/2

∇g(θ̂ML
τcn

)

∥∥∥∥
d→ N

(
0, 1
)
. (188)

Given the above generalized theorem, the proof of 4.11 is provided below. The proof of

Theorem 14.23 is provided later in this section.

Proof of Theorem 4.11. Note that τ
(1)
c and τ

(2)
c can be rewritten as

τ (1)c = min{m ≥ n0;
1

m
Γ
(1)
θ

(
{I(θ̂ML

τn ;am)}−1
)
≤ c2}

τ (2)c = min{m ≥ n0;
1

m
Γ
(1)
θ

(
{I(θ̂ML

τn ;am)}−1
)
≤ c},

where

Γ
(1)
θ (Σ) = tr

(
{∇h(θ)}TΣh(θ)

)
,Γ

(2)
θ (Σ) = tr

(
Σ
)
,

Both Γ
(l)
θ (Σ) (l = 1, 2) are continuously differentiable in θ and Σ so the first part of (185)

is satisfied. The second part of (185) is satisfied for Γ(2) is straightforward. For Γ
(1)
θ (Σ),

the second part of (185) is satisfied due to the assumption that ∇h(θ) ̸= 0 for all θ.

Thus, conditions of Theorem 14.23 are satisfied, and the proof is completed by applying this

theorem.
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In the rest of the section, we present the proof of Theorem 14.23. Roughly, Theorem 14.23

is proved by combining the following lemma, compares the random and deterministic stop-

ping times, with the multivariate Anscombe’s theorem (Lemma 13.3).

Lemma 14.24. Assume a family of function Γθ satisfies (185). Assume there exists con-

stants 0 < u1 < u2 <∞ such that for any n ≥ n0 and θ ∈ Θ,

u1I ⪯ Iπn(θ) ⪯ u2I. (189)

If as n→ ∞,

cn → 0, cn ≥ cn+1 > 0,

θ̂n → θ∗ a.s. P∗, and

πn → π a.s. P∗,

(190)

where Iπ(θ∗) is nonsingular. Then, τcn <∞ a.s. P∗ and as n→ ∞,

τ(Γθ∗ , cn,θ
∗,π) → ∞, τcn → ∞, and

τcn
τ(Γθ∗ , cn,θ∗,π)

→ 1, a.s. P∗. (191)

Proof of Lemma 14.24. By Theorem (14.1) and equation (78), we know that there exists

0 < c < c <∞ such that

cIp ⪯ Iπm(θ̂n) ⪯ cIp,

for all m ≥ n0. By assumption (185), there exists 0 < v1 < v2 <∞ such that for any n ≥ n0,

v1 ≤ Γθ̂m
({Iπm(θ̂m)}−1) ≤ v2.

Note that τ(Γθ∗ , cn,θ
∗,π) = max{⌈Γθ∗ ({Iπ(θ∗)}−1)

cn
⌉, n0} → ∞, as n→ ∞. Also note that

{
m ≥ n0;

v2
m

≤ cn

}
⊂
{
m ≥ n0;

1

m
Γθ̂m

({Iπm(θ̂m)}−1) ≤ cn

}
⊂
{
m ≥ n0;

v1
m

≤ cn

}
.

Thus, for any fixed n,

τcn ≤ min
{
m ≥ n0;

v2
m

≤ cn

}
≤
⌈v2
cn

⌉
+ n0 <∞, a.s. P∗,

and as n→ ∞,

τcn ≥ min
{
m ≥ n0;

v1
m

≤ cn

}
≥
⌈v1
cn

⌉
→ ∞.
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By assumption (190), we know that

lim
n→∞

{Iπn(θ̂n)}−1 = {Iπ(θ∗)}−1 a.s. P∗.

Combining the compact convergence assumption (185) and (189), we obtain that

lim
n→∞

Γθ̂n

(
{Iπn(θ̂n)}−1

)
= Γθ∗

(
{Iπ(θ∗)}−1

)
a.s. P∗.

That is, with probability 1, for any η > 0, there exits Nη ≥ n0 such that for any n ≥ Nη,∣∣Γθ̂n

(
{Iπn(θ̂n)}−1

)
− Γθ∗

(
{Iπ(θ∗)}−1

)∣∣ < η.

Set N2 = min
{
n ≥ Nη; ⌈ v1

cn
⌉ ≥ Nη

}
<∞. For any n ≥ N2, we obtain that,

{
m ≥ n0;

1

m

{
Γθ∗
(
{Iπ(θ∗)}−1

)
+ η
}
≤ cn

}
⊂
{
m ≥ n0;

1

m
Γθ̂m

({Iπm(θ̂m)}−1) ≤ cn

}
⊂
{
m ≥ n0;

1

m

{
Γθ∗
(
{Iπ(θ∗)}−1

)
− η
}
≤ cn

}
,

which implies that

⌈Γθ∗({Iπ(θ∗)}−1)− η

cn

⌉
≤ τcn ≤

⌈Γθ∗({Iπ(θ∗)}−1) + η

cn

⌉
.

Set η = ξ · Γθ∗({Iπ(θ∗)}−1) and dn = Γθ∗({Iπ(θ∗)}−1)/cn → ∞. Note that

⌈(1− ξ)dn⌉
⌈dn⌉

≤ τcn
τ(Γθ∗ , cn,θ∗,π)

≤ ⌈(1 + ξ)dn⌉
⌈dn⌉

. (192)

Taking the infimum limit and supremum limit over both sides of inequalities (192), we obtain

that for any ξ > 0,

(1− ξ) ≤ lim inf
n→∞

τcn
τ(Γθ∗ , cn,θ∗,π)

≤ lim sup
n→∞

τcn
τ(Γθ∗ , cn,θ∗,π)

≤ (1 + ξ).

In conclusion,

lim
n→∞

τcn
τ(Γθ∗ , cn,θ∗,π)

= 1, a.s. P∗.

Proof of Theorem 14.23. Let vn = τ(Γθ∗ , cn,θ
∗,π∗). Accordin to Theorem 4.1 and Theorem
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4.3, the conditions in (190) are satisfied. By Lemma 14.24, we obtain (191), which implies

that
√
τn{Iπn(θ̂ML

n )}1/2 1
√
vn

{Iπ∗
(θ∗)}−1/2 → Ip, a.s. P∗. (193)

For the ease of exposition, we write τn = τcn . To show the limit result (187), by (193) and

Slutsky’s theorem, it suffices to show that

√
vn

{
Iπ∗

(θ∗)
}1/2

(θ̂ML
τn − θ∗)

d→ Np

(
0p, Ip

)
. (194)

According to Theorem 13.3 with Tn = θ̂ML
n , θ = θ∗, Nn = τn, rn = vn, and Wn =

n−1/2
{
Iπ∗

(θ∗)
}−1/2

, (194) we only need to verify the following conditions for Theorem 13.3:

for all γ > 0, ε > 0, there exists 0 < δ < 1 such that

lim sup
n→∞

P
(

max
|n′−n|≤δn

∥∥∥θ̂ML
n′ − θ̂ML

n

∥∥∥ ≥ ε√
n
λmin({Iπ∗

(θ∗)}−1/2)
)
≤ γ.

To show the above inequality, it suffices to show that for any γ > 0, ε > 0, there exists

0 < δ < 1 such that

lim sup
n→∞

P
(

max
n′,n′′,n′′′∈[n,(1+δ)n]

√
n′′′
∥∥∥θ̂ML

n′ − θ̂ML
n′′

∥∥∥ ≥ ελmin({Iπ∗
(θ∗)}−1/2)

)
≤ γ.

Note that

P
(

max
n′,n′′,n′′′∈[n,(1+δ)n]

√
n′′′
∥∥∥θ̂ML

n′ − θ̂ML
n′′

∥∥∥ ≥ ελmin({Iπ∗
(θ∗)}−1/2)

)
≤P
(

max
n′,n′′∈[n,(1+δ)n]

√
n
(∥∥∥θ̂ML

n′ − θ̂ML
n

∥∥∥+ ∥∥∥θ̂ML
n − θ̂ML

n′′

∥∥∥) ≥ ε√
1 + δ

λmin({Iπ∗
(θ∗)}−1/2)

)
≤2 · P

(
max

n′∈[n,(1+δ)n]

√
n
∥∥∥θ̂ML

n′ − θ̂ML
n

∥∥∥ ≥ ε

2
√
2
λmin({Iπ∗

(θ∗)}−1/2)
)
.

Thus, we only need to show that for all ε > 0,

lim
δ→0

lim sup
n→∞

P
(

max
n′∈[n,(1+δ)n]

√
n
∥∥∥θ̂ML

n′ − θ̂ML
n

∥∥∥ ≥ ελmin({Iπ∗
(θ∗)}−1/2)

)
= 0. (195)
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Let

Dn =
{
∇θln(θ̂

ML
n ;an) = 0

}
⋂{ 1

n

n∑
j=1

Ψ
aj
2 (Xj)

∥∥{∇2
θln(θ

∗;an)}−1
∥∥
op
sup
n′≥n

ψ
(∥∥∥θ̂ML

n − θ̂ML
n′

∥∥∥) ≤ 1

2

}
⋂{ 1

n

n∑
j=1

Ψ
aj
2 (Xj)

∥∥{∇2
θln(θ

∗;an)}−1
∥∥
op
ψ
(∥∥∥θ̂ML

n − θ∗
∥∥∥) ≤ 1

2

}
⋂{∥∥∥{∇2

θln(θ̂
ML
n ;an)}−1

∥∥∥
op

≤ 2

λmin(Iπ∗(θ∗))

}
⋂{∥∥{∇2

θln(θ
∗;an)}−1

∥∥
op

≤ 2

λmin(Iπ∗(θ∗))

}
.

By Theorem 4.1, Theorem 14.1, Corollary 14.12, Lemma 14.13, and with probability 1,

lim sup
n→∞

∥∥∥{∇2
θln(θ̂

ML
n ;an)}−1

∥∥∥
op

≤ 1

λmin(Iπ∗(θ∗))
,

we know that

P

(
∞⋃

m=1

∞⋂
n=m

Dn

)
= 1.

By Lemma 14.14, we obtain that

⋂
m≥n

Dm ⊂
{

sup
n′:n≤n′≤(1+δ)n

∥∥∥θ̂ML
n′ − θ̂ML

n

∥∥∥ ≤ 4

λmin(Iπ∗(θ∗))
sup

n′:n≤n′≤(1+δ)n

∥∥∥∇θln(θ̂
ML
n′ ;an)

∥∥∥},
and

Dn ⊂
{√

n
∥∥∥θ̂ML

n − θ∗
∥∥∥ ≤ 4

λmin(Iπ∗(θ∗))

√
n ∥∇θln(θ

∗;an)∥
}
.

Thus

P
(

sup
n′:n≤n′≤(1+δ)n

∥∥∥θ̂ML
n′ − θ̂ML

n

∥∥∥ ≥ ε√
n
λmin({Iπ∗

(θ∗)}−1/2)
)

≤P
({ ⋂

m≥n

Dm

}c)
+ P

({
sup

n′:n≤n′≤(1+δ)n

√
n
∥∥∥∇θln(θ̂

ML
n′ ;an)

∥∥∥ ≥ C(ε)
}⋂ ⋂

m≥n

Dm

)
,

(196)

where C(ε) = ελmin({Iπ∗
(θ∗)}−1/2)

4{λmin(Iπ∗ (θ∗))}−1 . Let n′ ∈ [n + 1, (1 + δ)n]. With ∇θln′(θ̂ML
n′ ;an′) = 0, we
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know that that over ∩m≥nDm

√
n
∥∥∥∇θln(θ̂

ML
n′ ;an)

∥∥∥ =
1√
n

∥∥∥∥∥∇θ

n′∑
j=n+1

log fθ̂ML
n′ ,aj

(Xj)

∥∥∥∥∥
≤ 1√

n

∥∥∥∥∥
n′∑

j=n+1

∇θ log fθ∗,aj(Xj)

∥∥∥∥∥+ δ

∑n′

j=n+1 Ψ
aj
1 (Xj)

δn

√
n
∥∥∥θ̂ML

n′ − θ∗
∥∥∥

≤ 1√
n

∥∥∥∥∥
n′∑

j=n+1

∇θ log fθ∗,aj(Xj)

∥∥∥∥∥
+

4δ

λmin(Iπ∗(θ∗))

∑(1+δ)n
j=n+1 Ψ

aj
1 (Xj)

δn

1√
n

∥∥∥∥∥
n′∑
j=1

∇θ log fθ∗,aj(Xj)

∥∥∥∥∥ .

(197)

By Markov inequality, we obtain that for any M > 0

P
(∑

n+1≤j≤(1+δ)n) Ψ
aj
1 (Xj)

δn
≥M

)
≤ µY

M
,

where µY =
∑

a∈A EXa∼fθ∗,aΨ
a
1(X

a) <∞. Thus,

supn′:n+1≤n′≤(1+δ)n

∑n′

j=n+1Ψ
aj
1 (Xj)

δn
=

∑(1+δ)n
j=n+1 Ψ

aj
1 (Xj)

δn
= Op(1).

Note that Sn
m =

∑n+m
j=n+1∇θ log fθ∗,aj(Xj) is martingale sequence with respect to filtration

Fn
m = Fn+m.

By Assumption 2, C1 := maxa∈Amaxθ∈Θ EX∼fθ∗,a{∥∇θ log fθ,a(X)∥2} < ∞. Since ∥·∥ is

convex, by Jensen’s inequality, ∥Sn
m∥ is a submartingale. Applying Doob’s inequality (see

Theorem 6.5.d. in Lin (2010)), we obtain that

P
(

max
1≤m≤l

∥Sn
m∥ ≥M

)
≤ E ∥Sn

l ∥
2

M2
≤ l · C1

M2
.

Hence, we obtain

P
(

max
n+1≤n′≤(1+δ)n

1√
nδ

∥∥∥∥∥
n′∑

j=n+1

∇θ log fθ∗,aj(Xj)

∥∥∥∥∥ ≥M
)
≤ C1

M2
, (198)

and

P
(

max
n+1≤n′≤(1+δ)n

1√
n

∥∥∥∥∥
n′∑
j=1

∇θ log fθ∗,aj(Xj)

∥∥∥∥∥ ≥M
)
≤ (1 + δ)n · C1

n ·M2
≤ 2C1

M2
. (199)
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Combining (197), (198) and (199), we obtain

max
n′:n+1≤n′≤(1+δ)n

√
n
∥∥∥∇θln(θ̂

ML
n′ ;an)

∥∥∥ =
√
δOp(1) + δOP (1).

Thus,

lim sup
δ→0

lim sup
n→∞

P
({

sup
n′:n≤n′≤(1+δ)n

√
n
∥∥∥∇θln(θ̂

ML
n′ ;an)

∥∥∥ ≥ C(ε)
}⋂ ⋂

m≥n

Dm

)
≤ lim sup

δ→0
P
(√

δOp(1) ≥ C(ε)
)
= 0.

This completes the proof of (187).

We proceed to the proof of the ‘Furthermore’ part of the theorem. Note that

g(θ̂ML
τn )− g(θ∗) = {∇g(θ̃n)}T (θ̂ML

τn − θ∗),

where θ̃n → θ∗ and ∇g(θ̃n) → ∇g(θ∗) a.s. P∗ as n→ ∞. Then,

√
τn(g(θ̂

ML
τn )− g(θ∗))∥∥∥∥{Iπτn (θ̂ML

τn )
}−1/2

∇g(θ̂ML
τn )

∥∥∥∥ =

√
τn{∇g(θ̃n)}T (θ̂ML

τn − θ∗)∥∥∥∥{Iπτn (θ̂ML
τn )
}−1/2

∇g(θ̂ML
τn )

∥∥∥∥
=

[{
Iπτn (θ̂ML

τn )
}−1/2

∇g(θ̃n)
]T∥∥∥∥{Iπτn (θ̂ML

τn )
}−1/2

∇g(θ̂ML
τn )

∥∥∥∥
√
τn

{
Iπτn (θ̂ML

τn )
}1/2

(θ̂ML
τn − θ∗).

By Theorem 14.1 and Assumption 6B, we know that there exists U > 0 such that for any

n ≥ n0

cUIp ⪯ Iπn(θ) ⪯ cIp, ∀θ ∈ Θ.

Thus, the condition number of Iπn(θ), κ
(
Iπn(θ)

)
≤ c

cU
< ∞, for any θ ∈ Θ and n ≥ n0.

Moreover, we know that∥∥∥∥∥∥∥∥
{
Iπτn (θ̂ML

τn )
}−1/2

(∇g(θ̃n)−∇g(θ̂ML
τn ))∥∥∥∥{Iπτn (θ̂ML

τn )
}−1/2

∇g(θ̂ML
τn )

∥∥∥∥
∥∥∥∥∥∥∥∥

≤κ
({

Iπτn (θ̂ML
τn )
}−1/2)∥∥∥∇g(θ̃n)−∇g(θ̂ML

τn )
∥∥∥∥∥∥∇g(θ̂ML

τn )
∥∥∥ = op(1).
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Let hn =

{
Iπτn (θ̂ML

τn
)

}−1/2

∇g(θ̂ML
τn

)∥∥∥∥∥∥
{
Iπτn (θ̂ML

τn
)

}−1/2

∇g(θ̂ML
τn

)

∥∥∥∥∥∥
, then ∥hn∥ = 1. By continuous mapping theorem,

hn → h :=

{
Iπ∗

(θ∗)
}−1/2

∇g(θ∗)∥∥∥∥{Iπ∗(θ∗)
}−1/2

∇g(θ∗)

∥∥∥∥ a.s. P∗.

As n→ ∞,

√
τn(g(θ̂

ML
τn )− g(θ∗))∥∥∥∥{Iπτn (θ̂ML

τn )
}−1/2

∇g(θ̂ML
τn )

∥∥∥∥ = hT
√
τn

{
Iπτn (θ̂ML

τn )
}1/2

(θ̂ML
τn − θ∗) + op(1)

d→ N(0, 1).

This completes the proof of (188).

14.12 Proof of Corollaries 5.1, 5.2, and 5.3

In this section, we will verify the regularity conditions for the applications presented in

Sections 5.1, 5.2, and 5.3, thereby proving Corollaries 5.1, 5.2, and 5.3. First, according to

Lemma 13.13, Assumptions 6A and 7A imply Assumptions 6B and 7B. The next lemma is

useful for verifying Assumption 4.

Lemma 14.25. Let Fa = {log fθ,a(·) : θ ∈ Θ} , a ∈ A be collections of measurable functions

with a P∗ integrable envelope functions. That is, Fa satisfies that for all θ ∈ Θ,

| log fθ,a(xa)| ≤ Fa(x
a), a.s. P∗ and EXa∼fθ∗,aFa(X

a) <∞.

If Θ is compact and mapping θ 7→ log fθ,a(x
a) is continuous for every xa and a ∈ A, then

P∗

{
lim
n→∞

sup
θ∈Θ

|ln(θ;an)−M(θ;πn)| = 0

}
= 1.

Proof of Lemma 14.25. The proof is similar to the proof of Theorem 2.4.1 in Vaart and

Wellner (1997).First, we show that the bracketing numbers N[ ] (ε,Fa, L1(P∗)) < ∞, for

every a ∈ A and ε > 0, where the definition of bracketing number N[ ] (ε,F , ∥·∥) is given by

Definition 2.1.6 in Vaart and Wellner (1997).
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Let B(θ, δ) = {θ′ ∈ Θ; ∥θ′ − θ∥ < δ}. Define

uaB(θ′,δ)(x
a) = sup

∥θ−θ′∥<δ

log fθ,a(x
a), and, laB(θ′,δ)(x

a) = inf
∥θ−θ′∥<δ

log fθ,a(x
a).

Because the envelope function Fa is integrable with respect to P∗ and log fθ,a(·) is continuous
in θ, the Dominated Convergence Theorem ensures that for any θ′ and ε > 0, there exists

δ > 0 such that

Eθ∗
(
uaB(θ′,δ)(X

a)− laB(θ′,δ)(X
a)
)
< ε.

By compactness of Θ, there exists (θ1, δ1), (θ2, δ2), · · · , (θm, δm), such that for any θ ∈ Θ,

there exists 1 ≤ j ≤ m,

lj(x
a) ≤ log fθ,a(x

a) ≤ uj(x
a),

where uj = uaB(θj ,δj)
and lj = laB(θj ,δj)

. Thus, the bracketing numbersN[ ] (ε,Fa, L1(P∗)) <∞,

for all ε > 0 and a ∈ A. That is, we can choose finitely many ε−brackets [laj , u
a
j ], whose

union contains Fa and such that Eθ∗(uaj (X
a) − laj (X

a)) < ε, for every j. Hence, for every

θ ∈ Θ, a ∈ A, there exists ja such that

lja(x
a) ≤ log fθ,a(x

a) ≤ uja(x
a).

The above inequality also implies that

EX∼fθ,alja(X) ≤ EX∼fθ,a log fθ,a(x
a) ≤ EX∼fθ,auja(X) (200)

Note that, if the functions fθ,a(·) are inside the brackets [la, ua] for all a, then

ln(θ;an)−M(θ;πn)

≤ 1

n

n∑
i=1

(uai(Xi)− E[lai(Xi)|Fi−1])

≤ 1

n

n∑
i=1

(uai(Xi)− E[uai(Xi)|Fi−1]) + ε.

Thus,

sup
θ∈Θ

(ln(θ;an)−M(θ;πn)) ≤ max
a∈A

ua∈{ua
j ;1≤j≤m}

1

n

n∑
i=1

(uai(Xi)− E[uai(Xi)|Fi−1]) + ε.
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By Lemma 13.2,
1

n

n∑
i=1

(uai(Xi)− E[uai(Xi)|Fi−1])
a.s.−→ 0.

Consequently,

lim sup
n→∞

sup
θ∈Θ

(ln(θ;an)−M(θ;πn)) ≤ ε, a.s. P∗.

A similar argument yields that

lim inf
n→∞

inf
θ∈Θ

(ln(θ;an)−M(θ;πn)) ≥ −ε, a.s. P∗.

Taking ε→ 0, we obtain that

P
{
lim
n→∞

sup
θ∈Θ

|ln(θ;an)−M(θ;πn)| = 0

}
= 1.

Remark 14.26. Under Assumptions 1 and 2, if we assume ∇2
θfθ,a(x

a) is continuous in (θ, xa)

and

L := max
a∈A

sup
θ∈Θ,xa∈supp(fθ,a)

∥∥∇2
θ log fθ,a(x

a)
∥∥
op
<∞,

then by the first order Taylor expansion with Lagrange remainder, we can choose the envelop

function Fa as

Fa(x
a) = | log fθ∗,a(x

a)|+ ∥∇θ log fθ∗,a(x
a)∥ · diameter(Θ) +

L

2
· diameter(Θ)2.

Proof of Corollary 5.1. Let ξa = zT
a θ and hξa,a(x

a) = ζa(x
a) exp{xaξa −Ba(ξa)}. Let Xa ∼

fθ∗,a. Note that

∇ξa log hξa,a(X
a) = Xa−B′

a(ξa) and −∇2
ξa log hξa,a(X

a) = B′′
a(ξa) ≥ min

ξa=zT
a θ,θ∈Θ

B′′
a(ξa) > 0.

Assumption 1, θ∗ is in the interior of Θ, ξ∗a = zT
a θ

∗ is in the interior of {zT
a θ;θ ∈ Θ}.

Applying Theorem 5.8 in Lehmann and Casella (2006), we know that all moments for

∇ξa log hξ∗a,a(X
a) = Xa −B′

a(ξ
∗
a) exist. Also note that B′′

ai
(zT

ai
θ) > 0 and Iξa,a(ξa) = B′′(ξa)

is nonsingular. Thus, Assumptions 2 and 6A hold. Note that from the above derivations,∥∥∇2
ξa
log fθ,a(x

a)
∥∥
op

does not depend on xa. This, together with Lemma 14.25 and the ac-

companying Remark 14.26, implies that Assumption 4 is satisfied.
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Note that

DKL(hξ∗a,a∥hξa,a) = Ba(ξa)−Ba(ξ
∗
a) + (ξ∗a − ξ∗a)B

′
a(ξ

∗
a) ≥

1

2
∥ξ∗a − ξ∗a∥

2 min
ξ̃a=zT

a θ,θ∈Θ
B′′

a(ξ̃a).

Thus, Assumption 7A is satisfied with C = minξ̃a=zT
a θ,θ∈ΘB

′′
a(ξ̃a)/2.

Thus, to prove the corollary, it is sufficient to verify Assumption 3, which will be the

focus of the rest of the proof.

Because the Fisher information is Iξa,a(ξa) = B′′(ξa), the first part of conditions of

Assumption 3 on the smoothness of the Fisher information in θ holds. We proceed to verify

that
∑

a Ia(θ) is positive definite.

Note that

Ia(θ) = B′′(zT
a θ)zaz

T
a .

Thus,

c
∑
a∈A

zaz
T
a ≤

∑
a∈A

Ia(θ) ≤ c
∑
a∈A

zaz
T
a ,

where c = infθ∈Θ,a∈AB
′′
ai
(zT

a θ) > 0 and c = supθ∈Θ,a∈AB
′′
ai
(zT

a θ) <∞.

So, it is sufficient to show that
∑

a∈A zaz
T
a is non-singular. In the rest of the proof, we

show that
∑

a∈A zaz
T
a is non-singular by proving the following result in linear algebra:

{za; a ∈ A}⊥ = ker
(∑

a∈A

zaz
T
a

)
. (201)

Proof of (201) Because
∑

a∈A zaz
T
a is positive semidefinite,

z ∈ ker
(∑

a∈A

zaz
T
a

)
⇐⇒ zT

(∑
a∈A

zaz
T
a

)
z = 0 ⇐⇒

∑
a∈A

|zT
a z|2 = 0

⇐⇒ ⟨z, za⟩ = 0,∀a ∈ A ⇐⇒ z ∈ {za; a ∈ A}⊥.

Since
∑

a∈A zaz
T
a is symmetric,

R
(∑

a∈A

zaz
T
a

)
= ker

(∑
a∈A

zaz
T
a

)⊥
=
(
{za; a ∈ A}⊥

)⊥
= span{za; a ∈ A} = Rp.

This completes the proof of Corollary 5.1.
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Proof of Corollary 5.2. Because

fθ,a(xa) = exp(baxa) exp
{
zT
a θ − log(1 + exp(zT

a θ + ba))
}
, xa ∈ {0, 1},

the M2PL model described in (36) is a special case of the GLM described in (34), with

Ba(ξa) = log{1 + exp(ξa + ba)}, and ζa(xa) = exp(baxa). Because the support of Ba(·) is

R, conditions of Corollary 5.1 are satisfied. As a result, Corollary 5.2 follows by directly

applying Corollary 5.2.

Proof of Corollary 5.3. Note that the BTL model described in (39) is a special case of the

M2PL model described in (36) with the following za and ba for a = (i, j), and 0 ≤ i < j ≤ p,

(za, ba) =

(ej − ei, 0) if i ̸= 0

(ej, 0) if i = 0
. (202)

Thus, Corollary 5.3 is implied by Corollary 5.2 as long as we can verify that a connected

graph G ensures that dim(span{za; a ∈ A}) = p. In the rest of the proof, we prove a slightly

stronger result: for all G = {a1, · · · , as} ⊂ A, if the graph (V,G) is connected, where

V = {0, 1, 2, · · · , p}, then dim(span{za; a ∈ A}) = p.

First of all, if the graph G = (V,E) is connected, then it implies that s ≥ p. Let ZG =

[za1 , · · · , zas ]. It suffices to demonstrate that rank(ZG) = p. To proceed, we construct a

matrix that possesses the same rank as ZG, as described below. For a = (i, j), 0 ≤ i < j ≤ p,

let

z+
a =

(−1, zT
a )

T if i = 0

(0, zT
a )

T if i > 0.
(203)

Then, define Z+
G = [z+

a1 , · · · , z
+
as ] ∈ R(p+1)×s. Note that z+

a = (−zT
a 1p, z

T
a )

T for all a.

Consequently, rank(ZG) = rank(Z+
G ).

Let e+
0 = e1, · · · , e+

p = ep+1, where e1, . . . , ep+1 is the standard basis for Rp+1. It is easy

to check that z+
a = e+

a1
− e+

a2
, where a = (a1, a2). Let v1 = a11, v2 = a12, S2 = {v1, v2} and

G−1 = {a ∈ G; a ̸= a1}, where a1 = (a11, a
1
2). Set â1 = a1. Now we know that rank(z+

â1
) = 1

Since (V,G) is a connected graph, there exists a′ ∈ G−1 such that a′ = (a′1, a
′
2) a

′
1 ∈ S2

and a′2 ̸∈ S2 (or a′2 ∈ S2 and a′1 ̸∈ S2). Set v3 = a′2 (or v3 = a′1), S3 = S2 ∪ {v3}, â2 = a′, and

G−2 = {a ∈ G−1; a ̸= â2}. By our construction, we know that z+
â2

= e+
a′1

− e+
a′2

̸∈ span{z+
â1
}.

Thus, rank([z+
â1
z+
â2
]) > rank(z+

â1
).

Because (V,G) is a connected graph, we can always repeat the above process, until
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Sp+1 = V . By this process, we obtain a sequence â1, · · · , âp, such that

1 = rank(z+
â1
) < · · · < rank([z+

â1
, · · · , z+

âp−1
]) < rank([z+

â1
, · · · , z+

âp
]) = p.

Notice that p = rank([z+
â1
, · · · , z+

âp
]) ≤ rank(Z+

G ) = rank(ZG) ≤ p. This implies that

rank(ZG) = p.
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